Have a personal or library account? Click to login
Prediction of the Freight Train Energy Consumption With the Time Series Models Cover

Prediction of the Freight Train Energy Consumption With the Time Series Models

Open Access
|Jul 2025

References

  1. Deng, K., Peng, H., Dirkes, S., Gottschalk, J., Ünlübayir, C. Thul, A., Löwenstein, L. Pischinger, S. & Hameyer, K. (2021) An adaptive PMP-based model predictive energy management strategy for fuel cell hybrid railway vehicles, eTransportation, https://doi.org/10.1016/j.etran.2020.100094
  2. Ćalić, J., Šelmić, M., Macura, D. & Nikolić, M. (2019) Fuzzy logic application in green transport prediction of freight train energy consumption. In: Vidović, M. & Zečević, S. (Eds.) 4th Logistics International Conference (LOGIC), Belgrade, (pp. 35–44), Faculty of Traffic and Transport Engineering
  3. Fernández, P.M., Román, C.G. & Franco, R.I. (2016) Modelling Electric Trains Energy Consumption Using Neural Networks, Transportation Research Procedia, https://doi.org/10.1016/j.trpro.2016.12.008
  4. Jia, S., Peng, H., Liu, S. & Zhang X. (2009) Review of Transportation and Energy Consumption Related Research, Journal of Transportation Systems Engineering and Information Technology, https://doi.org/10.1016/S1570-6672(08)60061-6
  5. Jozi, A., Pinto, T., Praça, I., Ramos, S., Vale, Z., Goujon, B. & Petrisor, T. (2017) Energy consumption forecasting using neuro-fuzzy inference systems: Thales TRT building case study, In: Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), https://doi.org/10.1109/SSCI.2017.8285200
  6. Liu, J. (2018) Calculation and analysis of energy consumption of Chinese national rail transport, International Journal of Energy Sector Management, https://doi.org/10.1108/IJESM-05-2016-0006
  7. Nikolić, M., Šelmić, M., Macura, D. & Ćalić, J. (2020) Bee Colony Optimization metaheuristic for fuzzy membership functions tuning, Expert Systems with Applications, https://doi.org/10.1016/j.eswa.2020.113601
  8. Pineda-Jaramillo, J., Martínez-Fernández, P., Villalba-Sanchis, I., Salvador-Zuriaga, P. & Insa-Franco, R. (2021) Predicting the traction power of metropolitan railway lines using different machine learning models, International Journal of Rail Transportation, https://doi.org/10.1080/23248378.2020.1829513
  9. Tang, Z., Yin, H., Yang, C., Yu, J. & Guo, H. (2021) Predicting the electricity consumption of urban rail transit based on binary nonlinear fitting regression and support vector regression, Sustainable Cities and Society, https://doi.org/10.1016/j.scs.2020.102690
  10. Taylan, O. & Demirbas, A. (2016) Forecasting and analysis of energy consumption for transportation in the Kingdom of Saudi Arabia, Energy Sources, Part B: Economics, Planning, and Policy, https://doi.org/10.1080/15567249.2015.1004383
  11. Teodorović, D. & Nikolić, M. (2020) Quantitative Methods in Transportation, CRC Press, Taylor & Francis Group, Boca Raton
  12. Wang, J. & Rakha, H. (2017) Electric train energy consumption modelling, Applied Energy, https://doi.org/10.1016/j.apenergy.2017.02.058
  13. Yang, X., Yuan, J., Yuan, J. & Mao, H. (2010) An improved WM method based on PSO for electric load forecasting, Expert Systems with Applications, https://doi.org/10.1016/j.eswa.2010.05.085
DOI: https://doi.org/10.2478/ethemes-2024-0001 | Journal eISSN: 2217-3668 | Journal ISSN: 0353-8648
Language: English
Page range: 1 - 17
Submitted on: Jan 2, 2024
Accepted on: Jan 30, 2024
Published on: Jul 5, 2025
Published by: University of Niš, Faculty of Economics
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Predrag Grozdanović, Miloš Nikolić, Milica Šelmić, Dragana Macura, published by University of Niš, Faculty of Economics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.