References
- Acosta-Milch L., Lucht W., Bondeau A., Beringer T. 2011. Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach. Renewable and Sustainable Energy Reviews, 15: 2791–2809.10.1016/j.rser.2011.02.011
- Aguilar Rivera N., Galindo Mendoza M.G., Contreras Servín C., Fortanelli Martínez J. 2012. A methodological approach to sugar mill diversification and conversion. Ingeniería e Investigación, 32, 2: 23–27.10.15446/ing.investig.v32n2.31884
- Aguilar-Rivera N. 2014. Diversification index of the sugar agroindustry in Mexico Agricultura, sociedad y desarrollo, 11, 4: 441–462.10.22231/asyd.v11i4.5
- Alckmin-Governor G., Goldemberg-Secretary J. 2004. Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil. Government of the State of São Paulo.
- Alemán-Nava G.S., Meneses-Jácome A., Cárdenas-Chávez D.L., Díaz-Chavez R., Scarlat N., Dallemand J.F., Ornelas-Soto N., García-Arrazola R., Parra R. 2015. Bioenergy in Mexico: Status and perspective. Biofuels, Bioproducts and Biorefining, 9, 1: 8–20.10.1002/bbb.1523
- Amaya A. 2010. Sugarcane research and technology transfer—strategies for the next decade. Proceedings – International Society of Sugar Cane Technologists, 27.
- Azapagic A., Perdan S. 2000. Indicators of sustainable development for industry: a general framework. Process Safety and Environmental Protection, 78, 4: 243–261.10.1205/095758200530763
- Barrera I., Amezcua-Allieri M.A., Estupiñan L., Martínez T., Aburto J. 2016. Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcane and blue agave bagasses. Chemical Engineering Research and Design, 107: 91–101.10.1016/j.cherd.2015.10.015
- Bechara R., Gomez A., Saint-Antonin V., Schweitzer J.M., Maréchal F., Ensinas A. 2018. Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity. Renewable and Sustainable Energy Reviews, 91: 152–164.10.1016/j.rser.2018.02.020
- Brambila-Paz J.D.J., Martínez-Damián M.Á., Rojas-Rojas M.M., Perez-Cerecedo V. 2013. Real options, biorefineries and bioeconomy: the case of bioethanol and sugar. Agrociencia, 47, 3: 281–292.
- Brown D.G., Verburg P.H., Pontius R.G., Lange M.D. 2013. Opportunities to improve impact, integration, and evaluation of land change models. Current Opinion in Environmental Sustainability, 5, 5: 452–457.10.1016/j.cosust.2013.07.012
- Buchholz T.S., Volk T.A., Luzadis V.A. 2007. A participatory systems approach to modeling social, economic and ecological components of bioenergy. Energy Policy, 35: 6084–6094.10.1016/j.enpol.2007.08.020
- Büyüközkan G., Karabulut Y. 2018. Sustainability performance evaluation: Literature review and future directions. Journal of Environmental Management, 217: 253–267.10.1016/j.jenvman.2018.03.064
- Cardoso T.F., Watanabe M.D., Souza A., Chagas M.F., Cavalett O., Morais E.R., Bonomi A. 2018. Economic, environmental, and social impacts of different sugarcane production systems. Biofuels, Bioproducts and Biorefining, 12, 1: 68-82.10.1002/bbb.1829
- Cavalett O., Junqueira T.L., Dias M.O.S., Jesus C.D.F., Mantelatto P.E., Cunha M.P., Franco H.C.J., Cardoso T.F., Filho R.M., Rossell C.E.V., Bonomi A., 2011. Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technologies and Environmental Policy, 14: 399–410.10.1007/s10098-011-0424-7
- Chauhan M.K., Chaudhary S., Kumar S. 2011. Life cycle assessment of sugar industry: A review. Renewable and Sustainable Energy Reviews, 15, 7: 3445–3453.10.1016/j.rser.2011.04.033
- Chávez-Rodríguez M.F., Nebra S.A. 2010. Assessing GHG Emissions, Ecological Footprint, and Water Linkage for Different Fuels. Environmental Science & Technology, 44: 9252–9257.10.1021/es101187h
- Ciegis R., Ramanauskiene J., Startiene G. 2015. Theoretical reasoning of the use of indicators and indices for sustainable development assessment. Engineering Economics, 63, 4: 33–40.
- Cobuloglu H.I., Büyüktahtakın İ.E. 2015. A stochastic multi-criteria decision analysis for sustainable biomass crop selection. Expert Systems with Applications, 42, 15: 6065–6074.10.1016/j.eswa.2015.04.006
- Conadesuca. 2015. Sistema de Información de Costos de Producción de Caña de Azúcar. Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca. México.
- Conadesuca. 2018. Sistema de Información de Costos de Producción de Caña de Azúcar. Secretaría de Agricultura, Ganadería, Desarrollo Rural y Pesca. México.
- Contreras A.M., Rosa E., Pérez M., Van Langenhove H., Dewulf J. 2009. Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. Journal of Cleaner Production, 17, 8: 772–779.10.1016/j.jclepro.2008.12.001
- de Oliveira Neto G.C., Pinto L.F.R., Amorim M.P.C., Giannetti B.F., de Almeida C.M.V.B. 2018. A framework of actions for strong sustainability. Journal of Cleaner Production. 196: 1629–1643.10.1016/j.jclepro.2018.06.067
- Eggleston G., Lima I. 2015. Sustainability issues and opportunities in the sugar and sugar-bioproduct industries. Sustainability, 7, 9: 12209–12235.10.3390/su70912209
- Elghali L., Clift R., Sinclair P., Panoutsou C., Bauen A. 2007. Developing a sustainability framework for the assessment of bioenergy systems. Energy Policy, 35: 6075–6083.10.1016/j.enpol.2007.08.036
- FAO (Food and Agriculture Organization). CROPWAT model (Online). Available at: http://www.fao.org/nr/water/infores_databases_cropwat.html. 2014a.
- FAO. CLIMWAT for CROPWAT. Available at: http://www.fao.org/nr/water.2014b.
- Fingerman K.R., Torn M.S., O’Hare M.H., Kammen D.M. 2010. Accounting for the water impacts of ethanol production. Environmental Research Letters, 5: 014020 7.10.1088/1748-9326/5/1/014020
- Finguerut J. 2010. Sustainability in sugarcane processing in Brazil. Proceedings – International Society of Sugar Cane Technologists, 27.
- Gan X., Fernandez I.C., Guo J., Wilson M., Zhao Y., Zhou B., Wu J. 2017. When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators, 81: 491–502.10.1016/j.ecolind.2017.05.068
- Gani F.Q., Hantoro R. 2018. An ANP (Analytic Network Process)-based Multi-Criteria Decision Approach for The Selection of Sugar-Cane Industry Development. IPTEK Journal of Proceedings Series, 1: 54–58.10.12962/j23546026.y2018i1.3507
- García C.A., Fuentes A., Hennecke A., Riegelhaupt E., Manzini F., Masera O. 2011. Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Applied Energy, 88: 2088–2097.10.1016/j.apenergy.2010.12.072
- García C.A., García-Treviño E.S., Aguilar-Rivera N., Armendáriz C. 2016. Carbon footprint of sugar production in Mexico. Journal of Cleaner Production, 112: 2632–2641.10.1016/j.jclepro.2015.09.113
- Gasparatos A., Scolobig A. 2012. Choosing the most appropriate sustainability assessment tool. Ecological Economics, 80: 1–7.10.1016/j.ecolecon.2012.05.005
- Gnansounou E., Alves C.M., Pachón E.R., Vaskan P. 2017. Comparative assessment of selected sugarcane biorefinery-centered systems in Brazil: A multi-criteria method based on sustainability indicators. Bioresource technology, 243: 600–610.10.1016/j.biortech.2017.07.00428704740
- Goldemberg J. Teixeira C.S., Guardabassi P. 2008. The sustainability of ethanol production from sugarcane. Energy Policy, 35: 2086–2097.10.1016/j.enpol.2008.02.028
- Grigoletto-Duarte C., Gaudreau K., Gibson R.B., Malheiros T.F. 2013. Sustainability assessment of sugarcane-ethanol production in Brazil: A case study of a sugarcane mill in Sao Paulo state. Ecological Indicators, 30: 119–129.10.1016/j.ecolind.2013.02.011
- Gulisano G., Strano A., De Luca A.I., Falcone G., Iofrida N., Stillitano T. 2018. Evaluating the Environmental, Economic, and Social Sustainability of Agro-Food Systems through Life Cycle Approaches. Sustainable Food Systems from Agriculture to Industry: 123–152.10.1016/B978-0-12-811935-8.00004-4
- Heinrichs R., Otto R., Magalhães A., Meirelles G.C. 2017. Importance of Sugarcane in Brazilian and World Bioeconomy. [in:] S. Dabbert, I. Lewandowski, J. Weiss, A. Pyka (eds) Knowledge-Driven Developments in the Bioeconomy. Springer, Cham: 205–217.10.1007/978-3-319-58374-7_11
- Hoekstra A., Chapagain A. 2008. Globalization of Water: Sharing the Planet’s Freshwater Resources. Blackwell Publishing.10.1002/9780470696224
- Ingaramo A., Heluane H., Colombo M., Cesca M. 2009. Water and wastewater eco-efficiency indicators for the sugar cane industry. Journal of Cleaner Production, 17, 4: 487–495.10.1016/j.jclepro.2008.08.018
- Ishizaka A., Labib A. 2009. Analytic hierarchy process and expert choice: Benefits and limitations. OR Insight, 22, 4: 201–220.10.1057/ori.2009.10
- Ishizaka A., Labib A. 2011. Review of the main developments in the analytic hierarchy process. Expert systems with applications, 38, 11: 14336–14345.10.1016/j.eswa.2011.04.143
- Klimiuk E., Pawłowski A. 2016. Biofuels and sustainable development. [in:] Biomass for Biofuels. CRC Press: 11–22.10.1201/9781315226422-6
- Lang T., Schoen V., Hashem K., McDonald L., Parker J., Savelyeva A. 2017. The Environmental, Social, and Market Sustainability of Sugar. [in:] D. Barling (ed.) Advances in Food Security and Sustainability, 2, Elsevier: 115–136.10.1016/bs.af2s.2017.09.002
- Leal M.R.L., Nogueira L.A.H., Cortez L.A. 2013. Land demand for ethanol production. Applied Energy, 102: 266–271.10.1016/j.apenergy.2012.09.037
- Linnenluecke M.K., Nucifora N., Thompson N. 2018. Implications of climate change for the sugarcane industry. Wiley Interdisciplinary Reviews: Climate Change, 9, 1: e498.10.1002/wcc.498
- Liu G. 2014. Development of a general sustainability indicator for renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 31: 611–621.10.1016/j.rser.2013.12.038
- Martínez-Guido S.I., González-Campos J.B., Ponce-Ortega J.M., Nápoles-Rivera F., El-Halwagi M.M. 2015. Optimal reconfiguration of a sugar cane industry to yield an integrated biorefinery. Clean Technologies and Environmental Policy: 1–10.10.1007/s10098-015-1039-1
- Mekonnen M.M., Hoekstra A.Y. 2011. The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15, 5: 1577–1600.10.5194/hess-15-1577-2011
- Moncada J., El-Halwagi M.M., Cardona C.A. 2013. Techno-economic analysis for a sugarcane biorefinery: Colombian case. Bioresource technology, 135: 533–543.10.1016/j.biortech.2012.08.137
- Mugica-Álvarez V., Hernández-Rosas F., Magaña-Reyes M., Herrera-Murillo J., Santiago-De La Rosa N., Gutiérrez-Arzaluz M., González-Cardoso G. 2018. Sugarcane burning emissions: Characterization and emission factors. Atmospheric Environment, 193: 262–272.10.1016/j.atmosenv.2018.09.013
- Mugica-Alvarez V., Santiago de la Rosa N., Figueroa-Lara J., Flores-Rodríguez J., Torres-Rodríguez M., Magaña-Reyes M., 2015. Emissions of PAHs derived from sugarcane burning and processing in Chiapas and Morelos México. Science of the Total Environment, 527: 474–482.10.1016/j.scitotenv.2015.04.08925984704
- Munda G. 2016. Multiple Criteria Decision Analysis and Sustainable Development. [in:] S. Greco (ed.) Multiple Criteria Decision Analysis, Springer, New York: 1235–1267.10.1007/978-1-4939-3094-4_27
- Nardo M., Saisana M., Saltelli A., Tarantola S., Hoffman A., Giovannini E. 2005. Handbook on constructing composite indicators. OECD Statistics Working Paper.
- Neumayer E. 2001. The human development index and sustainability—a constructive proposal. Ecological Economics, 39, 1: 101–114.10.1016/S0921-8009(01)00201-4
- Nguyen T.L.T., Gheewala S.H., Garivait S. 2008. Full chain energy analysis of fuel ethanol from cane molasses in Thailand. Applied Energy. 85: 722–734.10.1016/j.apenergy.2008.02.002
- Nguyen T.T., Kikuchi Y., Noda M., Hirao M. 2015. A New Approach for the Design and Assessment of Bio-based Chemical Processes toward Sustainability. Industrial & Engineering Chemistry Research, 54, 20: 5494–5504.10.1021/ie503846q
- Nikodinoska N., Mattivi M., Notaro S., Paletto A. 2015. Stakeholders’ appraisal of biomass-based energy development at local scale. Journal of Renewable and Sustainable Energy, 7, 2: 023117.10.1063/1.4916654
- Pereira C.L.F., Ortega E. 2010. Sustainability assessment of large-scale ethanol production from sugarcane. Journal of Cleaner Production, 18: 77–82.10.1016/j.jclepro.2009.09.007
- Ramankutty N., Mehrabi Z., Waha K., Jarvis L., Kremen C., Herrero M., Rieseberg L.H. 2018. Trends in global agricultural land use: implications for environmental health and food security. Annual Review of Plant Biology, 69: 789–815.10.1146/annurev-arplant-042817-040256
- Rathore D., Nizami A.S., Singh A., Pant D. 2016. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Research Journal, 3, 2: 380–393.10.18331/BRJ2016.3.2.3
- Renouf M.A., Pagan R.J., Wegener M.K., 2013. Bio-production from Australian sugarcane: an environmental investigation of product diversification in an agro-industry. Journal of Cleaner Production, 39: 87–96.10.1016/j.jclepro.2012.08.036
- Rincón L.E., Becerra L.A., Moncada J., Cardona C.A. 2014. Techno-Economic Analysis of the Use of Fired Cogeneration Systems Based on Sugar Cane Bagasse in South Eastern and Mid-Western Regions of Mexico. Waste Biomass Valorization, 5: 189–198.10.1007/s12649-013-9224-0
- Rockström J., Steffen W., Noone K., Persson Å., Chapin III F.S., Lambin E.F., Nykvist B. 2009. A safe operating space for humanity. Nature, 461: 472–475.10.1038/461472a
- Saaty T.L. 1990. How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48, 1: 9–26.10.1016/0377-2217(90)90057-I
- Saaty T.L. 2008. Decision making with the analytic hierarchy process. International journal of services sciences, 1, 1: 83–98.10.1504/IJSSCI.2008.017590
- Saaty T.L. 2013. The modern science of multicriteria decision making and its practical applications: the AHP/ANP approach. Operations Research, 61, 5: 1101–1118.10.1287/opre.2013.1197
- Santillán-Fernández A., Santoyo-Cortés V.H., García-Chávez L.R., Covarrubias-Gutiérrez I., Merino A. 2016. Influence of drought and irrigation on sugarcane yields in different agroecoregions in Mexico. Agricultural Systems, 143: 126–135.10.1016/j.agsy.2015.12.013
- Santoyo-Castelazo E., Azapagic A. 2014. Sustainability assessment of energy systems: integrating environmental, economic and social aspects. Journal of Cleaner Production, 80: 119–138.10.1016/j.jclepro.2014.05.061
- Sarker T.C., Azam S.M.G.G., Bonanomi G. 2017. Recent advances in sugarcane industry solid by-products valorization. Waste and Biomass Valorization, 8, 2: 241–266.10.1007/s12649-016-9665-3
- Schaidle J.A., Moline C.J., Savage P.E. 2011. Biorefinery sustainability assessment. Environmental Progress & Sustainable Energy, 30, 4: 743–753.10.1002/ep.10516
- Schmitz T.G., Lewis K.E. 2015. Impact of NAFTA on US and Mexican Sugar Markets. Journal of Agricultural and Resource Economics, 40, 3: 387–404.
- Sentíes-Herrera H.E., Gómez-Merino F.C., Valdez-Balero A., Silva-Rojas H.V., Trejo-Téllez L.I. 2014. The Agro-Industrial Sugarcane System in Mexico: Current Status, Challenges and Opportunities. Journal of Agricultural Science, 6, 4: 26–54.10.5539/jas.v6n4p26
- Sentíes-Herrera H.E., Trejo-Téllez L.I., Gómez-Merino F.C. 2017. The Mexican sugarcane production system: History, current status, and new trends. Sugarcane: Production systems, uses and economic importance: 39–71.
- Shukla S.K., Yadav S.K. 2017. Sustainability of smallholder sugarcane growers under changing climatic scenario. Current Advances in Agricultural Sciences (An International Journal), 9, 2: 197–203.10.5958/2394-4471.2017.00035.1
- Silalertruksa T., Gheewala S.H., Pongpat P. 2015. Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator. Applied Energy, 160: 603–609.10.1016/j.apenergy.2015.08.087
- Silva M., Marques P., Coelho L., Nestler H., Castro P., Galhano C. 2018. Promoting Sustainability Through Agro-industrial Waste Valorisation. [in:] F. Alves, W. Leal Filho, U. Azeiteiro (eds) Theory and Practice of Climate Adaptation. Springer, Cham: 363–373.10.1007/978-3-319-72874-2_21
- Subramanian N., Ramanathan R. 2012. A review of applications of Analytic Hierarchy Process in operations management. International Journal of Production Economics, 138, 2: 215–241.10.1016/j.ijpe.2012.03.036
- Talukdar D., Verma D.K., Malik K., Mohapatra B., Yulianto R. 2017. Sugarcane as a Potential Biofuel Crop. [in:] Ch. Mohan (ed.) Sugarcane Biotechnology: Challenges and Prospects. Springer, Cham: 123–137.10.1007/978-3-319-58946-6_9
- Tomei J. 2015. The sustainability of sugarcane-ethanol systems in Guatemala: Land, labour and law. Biomass and Bioenergy. 82: 94–100.10.1016/j.biombioe.2015.05.018
- UNC (Unión Nacional de Cañeros A.C.). 2015. Estadísticas de la agroindustria azucarera.
- Veisi H., Liaghati H., Alipour A. 2016. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecological Indicators, 60: 644–654.10.1016/j.ecolind.2015.08.012
- Walter A., Dolzan P., Quilodrán O., de Oliveira JG., Da silva C., Piacente F. Segerstedt A., 2011. Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects. Energy Policy, 39: 5703–5716.10.1016/j.enpol.2010.07.043
- Wang J.J., Jing Y.Y., Zhang C.F., Zhao J.H. 2009. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13, 9: 2263–2278.10.1016/j.rser.2009.06.021