References
- Aboal, D., & Tacsir, E. (2018). Innovation and productivity in services and manufacturing: the role of ICT. Industrial and Corporate Change, 28(2), 221–241. doi: 10.1093/icc/dtx030
- Adarov, A., & Stehrer, R. (2019). Tangible and Intangible Assets in the Growth Performance of the EU, Japan and the US. The Vienna Institute for International Economic Studies Research Report, 442, 1–44.
- Aghion, P., & Howitt, P. (2006). Appropriate growth policy: A unifying framework. Journal of the European Economic Association, 4(2–3), 269–314. doi:10.1162/jeea.2006.4.2-3.269
- Aigner, D., Lovell, C., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21–37.
- Añón Higón, D., Gómez, J., & Vargas, P. (2017). Complementarities in innovation strategy: do intangibles play a role in enhancing firm performance? Industrial and Corporate Change, 26(5), 865–886.
- Apokin, Yu., & Ipatova, I. (2017). Components of Total Factor Productivity of the Russian Economy with Respect to Other Countries of the World: The Role of Technical Efficiency. Studies on Russian Economic Development, 28(1), 15–21. doi: 10.1134/S1075700717010026
- Australia Prime Minister's Industry 4.0 Taskforce. (2017). Industry 4.0 Testlabs in Australia Preparing for the Future. Retrieved from https://www.industry.gov.au/sites/default/files/July%202018/document/pdf/industry-4.0-testlabs-report.pdf?acsf_files_redirect
- Ayvazyan, S., Afanasev, M., & Rudenko, V. (2012). Some issues of specification of three-factor models of the company's production potential that take into account intellectual capital [Nekotorye voprosy specifikacii trekhfaktornyh modelej proizvodstvennogo potenciala kompanii, uchityvayushchih intellektual’nyj kapital]. Applied Econometrics, 27(3), 36–69.
- Basu, S., & Fernald, J. (2007). Information and Communications Technology as a General-Purpose Technology: Evidence from US Industry Data. German Economic Review, 8, 146–173.
- Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Economics, 20, 325–332. doi: 10.1007/BF01205442
- Bessonova, E. V. (2018). Analysis of Russian firms’ TFP growth in 2009–2015. Voprosy Ekonomiki, 7, 96–118. doi: 10.32609/0042-8736-2018-7-96-118
- Bieńkowska, A. (2020). Controlling Effectiveness Model — empirical research results regarding the influence of control on organisational performance. Engineering Management in Production and Services, 12(3), 28–42. doi: 10.2478/emj-2020-0017
- BMWi. (2019). Case study on the Mittelstand 4.0 Competence Centres, Germany: Case study contribution to the OECD TIP Digital and Open Innovation project. Retrieved from https://www.innovationpol-icyplatform.org/www.innovationpolicyplatform.org/system/files/imce/SME4.0CompetenceCentres_Germany_TIPDigitalCaseStudy2019_1/index.pdf
- BMWi. (2020). Intelligent transport systems in the field of road transport. Retrieved from https://www.bmvi.de/EN/Topics/Digital-Matters/Intelligent-Transport-Systems/intelligent-transport-systems.html
- Bogliacino, F., & Pianta, M. (2016). The Pavitt Taxonomy, revisited: patterns of innovation in manufacturing and services. Economics & Politics, 33, 153–180. doi: 10.1007/s40888-016-0035-1
- Bonanno, G. (2016). ICT and R&D as inputs or efficiency determinants? Analysing Italian manufacturing firms (2007–2009). Eurasian Business Review, 6(3), 383–404.
- Bontempi, M. E., & Mairesse, J. (2015). Intangible capital and productivity at the firm level: A panel data assessment. Economics of Innovation and New Technology, 24, 22–51.
- Borisova, E., Peresetsky, A., & Polishchuk, L., (2010). Stochastic frontier in non-profit associations’ performance assessment (the case of homeowners’ associations). Applied Econometrics, 20(4), 75–101.
- Borras, S., & Edquist, Ch. (2013). The Choice of Innovation Policy Instruments. Papers in Innovation Studies 2013/04, Lund University. Retrieved from https://charlesedquist.files.wordpress.com/2013/02/201304_borrasedquist-21.pdf
- Brasini, S., & Freo, M. (2012). The impact of information and communication technologies: an insight at micro-level on one Italian region. Economics of Innovation and New Technology, 21(2), 107–123. doi: 10.1080/10438599.2011.558175
- Bresnahan T., & Trajtenberg, M. (1995). General purpose technologies ‘Engines of growth’? Journal of Econometrics, 65(1), 83–108.
- Brock G., & Ogloblin, C. (2018). Russian 1998–2007 TFP decomposed: some inspiration emerging from inherited Soviet legacy. Economic Change and Restructuring, 51(2), 135–151.
- Brynjolfsson, E. (1993). The Productivity Paradox of Information Technology. Communications of the ACM, 36, 66–77. doi: 10.1145/163298.163309
- Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics. The Economics of Artificial Intelligence: An Agenda, 23–57.
- Cardona, M., Kretschmer, T., & Strobel, T. (2013). ICT and productivity: conclusions from the empirical literature. Information Economics and Policy, 25(3), 109–125. doi: 10.1016/j.infoecopol.2012.12.002
- Castiglione, C. (2012). Technical efficiency and ICT investment in Italian manufacturing firms. Applied Economics, 44(14), 1749–1763.
- Castiglione, C., & Infante, D. (2014). ICTs and timespan in technical efficiency gains. A stochastic frontier approach over a panel of Italian manufacturing firms. Economic Modelling, 41, 55–65. doi: 10.1016/j.econmod.2014.04.021
- Caudill, S., & Ford, J., (1993). Biases in frontier estimation due to heteroscedasticity. Economics Letters, 41(1), 17–20.
- Chang, B., Huang, T., & Kuo, C. (2015). A comparison of the technical efficiency of accounting firms among the US, China, and Taiwan under the framework of a stochastic metafrontier production function. Journal of Productivity Analysis, 44(3), 337–349.
- Chappell, N., & Jaffe, A. (2016). Intangible Investment and Firm Performance. Review of Industrial Organization, 52, 509–559.
- Chen, C., & Krumwiede, D. (2017). What makes a manufacturing firm effective for service innovation? The role of intangible capital under strategic and environmental conditions. International Journal of Production Economics, 193, 113–122. doi: 10.1016/j.ijpe.2017.07.007
- Chun, N., & Ishaq, H. (2016). Intangible Investment and Changing Sources of Growth in Korea. Japanese Economic Review, 67(1), 50–76.
- Coelli, T., Rahman, S., & Thirtle, C. (2003). A stochastic frontier approach to total factor productivity measurement in Bangladesh crop agriculture, 1961–92. Journal of International Development, 15, 321–333. doi:10.1002/jid.975
- Corrado, C., Haskel, J., Jona-Lasinio, C., & Iommi, M. (2013). Innovation and intangible investment in Europe, Japan, and the United States. Oxford Review of Economic Policy, 23(2), 261–286.
- Corrado, C., Hulten, C., & Sichel, D. (2005). Measuring Capital and Technology: An Expanded Framework. In C. Corrado, J. Haltiwanger, & D. Sichel (Eds.), Measuring Capital in the New Economy (pp. 11–46). Chicago, USA: University of Chicago Press.
- Corrado, C., Hulten, C., & Sichel, D. (2009). Intangible Capital and U.S. Economic Growth. The Review of Income and Wealth, 55, 661–685.
- Crass, D., & Peters, B. (2014). Intangible assets and firm-level productivity. Centre for European Research Discussion Paper, 14–120.
- Dal Borgo, M., Goodridge, P., Haskel, J., & Pesole, A. (2013). Productivity and Growth in UK Industries: An Intangible Investment Approach. Oxford Bulletin of Economics and Statistics, 75, 806–834.
- David, P. (1990). The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox. American Economic Review: Papers and Proceedings, 80, 355–361.
- de Rassenfosse, G. (2017). An assessment of how well we account for intangibles. Industrial and Corporate Change, 26(3), 517–534. doi: 10.1093/icc/dtw034
- Dedrick, J., Kraemer, K., & Shih, E. (2013). Information Technology and Productivity in Developed and Developing Countries. Journal of Management Information Systems, 30(1), 97–122. doi: 10.2753/MIS0742-1222300103
- Delbecque, V., Bounfour, A., & Barreneche, A. (2015). Intangibles and Value Creation at the Industrial Level: Delineating Their Complementarities. In A. Bounfour, & T. Miyagawa (Eds.), Intangibles, Market Failure and Innovation Performance (pp. 27–56). Cham, UK: Springer.
- Dezhina, I., Ponomarev, A., & Frolov, A. (2015). Advanced Manufacturing Technologies in Russia: Outlines of a New Policy. Foresight-Russia, 9(1), 20–31.
- Dutz, M., Kannebley, S., Scarpelli, M., & Sharma, S. (2012). Measuring Intangible Assets in an Emerging Market Economy: An Application to Brazil. Policy Research Working Paper, No. 6142. Washington, DC: World Bank. Retrieved from https://openknowledge.world-bank.org/handle/10986/11972
- Ejdys, J. (2020). Trust-Based Determinants of Future Intention to Use Technology. Foresight and STI Governance, 14(1), 60–68. doi: 10.17323/2500-2597.2020.1.60.68
- European Commission. (2018). ICT innovation vouchers scheme for regions. Retrieved from https://ec.europa.eu/digital-single-market/en/ict-innovation-vouchers-scheme-regions
- Farrell, M. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society, 120(3), 253–290.
- Federal Aviation Administration. (2018). UAS Integration Pilot Program. Retrieved from https://www.faa.gov/uas/programs_partnerships/integration_pilot_program/
- Fleisher, B. M., McGuire, W. H., Smith, A. N., & Zhou, M. (2015). Knowledge capital, innovation, and growth in China. Journal of Asian Economics, 39, 31–42.
- France NUM. (2020). France NUM. Retrieved from https://www.francenum.gouv.fr/france-num
- Fukao, K., Miyagawa, T., Mukai, K., Shinoda, Y., & Tonogi, K. (2009). Intangible Investment In Japan: Measurement And Contribution To Economic Growth. Review of Income and Wealth, 55, 717–736. doi:10.1111/j.1475-4991.2009.00345.x
- Furman, J., & Seamans, R. (2018). AI and the Economy. Innovation Policy and the Economy, 19, 161–191. doi: 10.2139/ssrn.3186591
- GAO. (2019). Advanced Manufacturing: Innovation Institutes Have Demonstrated Initial Accomplishments, but Challenges Remain in Measuring Performance and Ensuring Sustainability. Retrieved from https://www.gao.gov/assets/700/699310.pdf
- Gershman, M., Gokhberg, L., Kuznetsova, T., & Roud, V. (2018). Bridging S&T and innovation in Russia: A historical perspective. Technological Forecasting and Social Change, 133, 132–140.
- Gokhberg, L., Ditkovskiy, K., Evnevich, E., Kuznetsova, I., Martynova, S., Ratay, T., Rosovetskaya, L., & Fridlyanova, S. (2020). Indicators of Innovation in the Russian Federation: 2020: Data Book. Moscow, Russia: National Research University Higher School of Economics.
- Goldar, B., & Parida, Y. (2017). Intangible Capital and Firm Productivity: A Study of Indian Corporate Sector Firms. South Asia Economic Journal, 18, 246–275.
- Gómez, J., & Vargas, P. (2012). Intangible resources and technology adoption in manufacturing firms. Research Policy, 41(9), 1607–1619. doi: 10.1016/j.respol.2012.04.016
- GOV.UK. (2017). UK Industrial Strategy. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/672468/uk-industrial-strategy-international-brochure-single-pages.pdf
- Greene, W. (2008). A Stochastic Frontier Model with Correction for Sample Selection. NYU Working Paper No. 2451/26017. Retrieved from https://ssrn.com/abstract=1281901
- Hall, B., Lottie, F., & Mairesse, J. (2013). Evidence on the impact of R&D and ICT investments on innovation and productivity in Italian firms. Economics of Innovation and New Technology, 22(3), 300–328. doi: 10.1080/10438599.2012.708134
- Hatzius, J., & Dawsey, K. (2015). Doing the Sums on Productivity Paradox v2.0. Goldman Sachs U.S. Economics Analyst, 15(30).
- Heshmati, A., Kumbhakar, S. C., & Hjalmarsson, L. (1995). Efficiency of the Swedish pork industry: A farm level study using rotating panel data 1976–1988. European Journal of Operational Research, 80(3), 519–533.
- Ipatova, I. (2015). The dynamics of total factor productivity and its components: Russian plastic production. Applied Econometrics, 38(2), 21–40.
- Ipatova, I., & Peresetsky, A. (2013). Technical efficiency of Russian plastic and rubber production firms. Applied Econometrics, 32(4), 71–92.
- ISSEK HSE. (2020). Dynamics and prospects of IT-industry development [Dinamika i perspektivy razvitiya IT-otrasli]. Retrieved from https://issek.hse.ru/mirror/pubs/share/371960649.pdf
- ITU. (2017). Measuring the Information Society Report 2017. Retrieved from https://www.itu.int/net4/ITU-D/idi/2017/index.html
- Kılıçaslan, Y., Sickles, R. C., Kayış, A. A., & Gürel, Y. Ü. (2017). Impact of ICT on the productivity of the firm: evidence from Turkish manufacturing. Journal of Productivity Analysis, 47(3), 277–289.
- Kleis, L., Chwelos, P., Ramirez, R., & Cockburn, I. (2012). Information Technology and Intangible Output: The Impact of IT Investment on Innovation Productivity. Information Systems Research, 23(1), 42–59.
- Kozłowska, J. (2020). Servitization of manufacturing: survey in the Polish machinery sector. Engineering Management in Production and Services, 12(1), 20–33. doi: 10.2478/emj-2020-0002
- KPMG (2012). Intangible assets and goodwill. Retrieved from https://assets.kpmg/content/dam/kpmg/ru/pdf/2012/RAP-Comparison/ru-ru-ifrs-vs-russian-gaap-2012-C3-03.pdf
- Krasnopeeva, N., Nazrullaeva, E., Peresetsky, A., & Shchetinin, E. (2016). To export or not to export? The link between the exporter status of a firm and its technical efficiency in Russia's manufacturing sector. Voprosy Ekonomiki, 7, 123–146. doi: 10.32609/0042-8736-2016-7-123-146
- Kumbhakar, S. C., & Lovell, C. K. (2000). Stochastic production frontier. Cambridge, UK: Cambridge University Press.
- Kumbhakar, S. C., & Peresetsky, A. (2013). Cost efficiency of Kazakhstan and Russian banks: results from competing panel data models-super-1. Macroeconomics and Finance in Emerging Market Economies, 6(1), 88–113.
- Kumbhakar, S. C., & Sarkar, S. (2003). Deregulation, ownership and productivity growth in the banking industry: Evidence from India. Journal of Money Credit and Banking, 35(3), 403–424.
- Kumbhakar, S., & Fuss, D. (2000). Estimation and decomposition of productivity change when production is not efficient: a panel data approach. Econometric Reviews, 19(4), 312–320.
- Kumbhakar, S., Lien, G., & Hardaker, J. (2014). Technical efficiency in competing panel data models: a study of Norwegian grain farming. Journal of Productivity Analysis, 41(2), 321–337.
- Kumbhakar. S. C., Parmeter, C. F., & Zelenyuk, V. (2017). Stochastic Frontier Analysis: Foundations and Advances. Working Papers 2017-10, University of Miami, Department of Economics. Retrieved from https://www.bus.miami.edu/_assets/files/repec/WP2017-10.pdf
- Li, Y. (2009). A firm-level panel-data approach to efficiency, total factor productivity, catch-up and innovation, and mobile telecommunications reform (1995–2007). ESRC Centre for Competition Policy, University of East Anglia CCP Working Paper 09-6. Retrieved from http://competitionpolicy.ac.uk/documents/107435/107587/1.114399!ccp09-6.pdf
- Malakhov, D., & Pilnik, N. (2013). Methods of Estimating of the Efficiency in Stochastic Frontier Models. Ekonomicheskii zhurnal VSE, 5, 660–686.
- Marrocu, E., Paci, R., & Pontis, M. (2012). Intangible capital and firms’ productivity. Industrial and Corporate Change, 21, 377–402.
- Mattsson, P., Månsson, J., & Greene, W. H. (2020) TFP change and its components for Swedish manufacturing firms during the 2008–2009 financial crisis. Journal of Productivity Analysis, 53, 79–93.
- Meeusen, W., & van den Broeck, J. (1977). Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. International Economic Review, 18(2), 435–44.
- METI. (2017). Recipe and Tools for Supporting Smart Monozukuri Targeting Mid-ranking Companies and SMEs in the Manufacturing Industry Compiled. Retrieved from https://www.meti.go.jp/english/press/2017/1010_005.html
- Mogilat, A., & Ipatova, I. (2016). Technical efficiency as a factor of Russian industrial companies’ risks of financial distress. Applied Econometrics, 42, 5–29.
- Molodchik, M. A., Jardon, C. M., & Bykova, A. A. (2019). The performance effect of intellectual capital in the Russian context: Industry vs company level. Journal of Intellectual Capital, 20(3), 335–354. doi: 10.1108/JIC-10-2018-0190
- Montresor, S., & Vezzani, A. (2016). Intangible investments and innovation propensity: Evidence from the Innobarometer 2013. Industry and Innovation, 23(4), 331–352.
- Nakamura, L. I. (2010). Intangible Assets and National Income Accounting. The Review of Income and Wealth, 56, 55–135.
- Nazarko, J., Ejdys, J., Gudanowska, A., Halicka, K., Kononiuk, A., Magruk, A., & Nazarko, L. (2020). Roadmapping in Regional Technology Foresight: A Contribution to Nanotechnology Development Strategy. IEEE Transactions on Engineering Management, 99, 1–16. doi: 10.1109/TEM.2020.3004549
- Nazarko, L. (2017). Future-Oriented Technology Assessment. Procedia Engineering, 182, 504–509. doi: 10.1016/j.proeng.2017.03.144
- Neirotti, P., Raguseo, E., & Paolucci, E. (2018). How SMEs develop ICT-based capabilities in response to their environment: Past evidence and implications for the uptake of the new ICT paradigm. Journal of Enterprise Information Management, 31(1),10–37.
- Next Generation Manufacturing Canada. (2018). Pilot Project Application Guide: Building World-Leading Advanced Manufacturing Capabilities in Canada. Retrieved from https://www.ngen.ca/hubfs/Documents/NGenPilotProjectApplicationGuide_EN_v1.1.pdf?hsLang=en
- Nwaiwu, F., Duduci, M., Chromjakova, F., & Otekhile, C.- A. F. (2020). Industry 4.0 concepts within the Czech SME manufacturing sector: an empirical assessment of critical success factors. Business: Theory and Practice, 21(1), 58–70. doi: 10.3846/btp.2020.10712
- OECD. (2017). OECD Digital Economy Outlook 2017. Paris, France: OECD Publishing.
- OECD. (2019). Fostering Science and Innovation in the Digital Age. Retrieved from https://www.oecd.org/going-digital/fostering-science-and-innovation.pdf
- Paklina, S., Molodchik, M., & Fernández-Jardón, C. (2017). Intangible-Intensive Strategies of Russian Companies. Higher School of Economics. Research Paper No. WP BRP 57/MAN/2017.
- Piekkola, H. (2020). Intangibles and innovation-labor-biased technical change. Journal of Intellectual Capital, 21 (5), 649–669.
- Piekkola, H. (2020). Intangibles and innovation-labor-biased technical change. Journal of Intellectual Capital, 21(5), 649–669. doi: 10.1108/JIC-10-2019-0241
- Pieri, F., Vecchi, M., & Venturini, F. (2018). Modelling the joint impact of R&D and ICT on productivity: A frontier analysis approach. Research Policy, 47(9), 1842–1852.
- Podmetina, D., Väätänenet, J., Torkkeli, M., & Smirnova, M. (2011). Open innovation in Russian firms: An empirical investigation of technology commercialisation and acquisition. International Journal of Business Innovation and Research, 5(3), 298–317.
- Polder, M., Bondt, H., & Leeuwen, G. (2018). Business dynamics, industry productivity growth, and the distribution of firm-level performance: evidence for the role of ICT using Dutch firm-level data. The Journal of Technology Transfer, 43(6), 1522–1541.
- Ramirez, P. G., & Hachiya, T. (2008). Measuring the contribution of intangibles to productivity growth: a disaggregated analysis of Japanese firms. Review of Pacific Basin Financial Markets and Policies, 11, 151–186.
- Rasel, F. (2017). ICT and global sourcing – evidence for German manufacturing and service firms. Economics of Innovation and New Technology, 26(7), 634–660. doi: 10.1080/10438599.2016.1267939
- Roth, F. (2019). Intangible Capital and Labour Productivity Growth: A Review of the Literature, Hamburg Discussion Papers in International Economics. Retrieved from https://www.econstor.eu/bitstream/10419/207163/1/hdpie-no04.pdf
- Rylková, Z., & Šebestová, J. (2019). Benchmarking of contributory organisations within the framework of technical efficiency. Engineering Management in Production and Services, 11(1), 80–91. doi: 10.2478/emj-2019-0006
- Sabirianova, K., Svejnar, J., & Terrell, K. (2005). Distance to the Efficiency Frontier and Foreign Direct Investment Spillovers. Journal of the European Economic Association, 3(2–3): 576–586.
- Shahabadi, A., Kimiaei, F., & Arbab Afzali, M. (2018). The Evaluation of Impacts of Knowledge-Based Economy Factors on the Improvement of Total Factor Productivity (a Comparative Study of Emerging and G7 Economies). Journal of the Knowledge Economy, 9(3), 896–907.
- Shahiduzzaman, M., Kowalkiewicz, M., & Barrett, R. (2018). Digital dividends in the phase of falling productivity growth and implications for policy making. International Journal of Productivity and Performance Management, 67(6), 1016–1032. doi: 10.1108/IJPPM-02-2017-0050
- Shakina, E., & Barajas, A. (2016). Intangible-intensive profiles of companies: protection during the economic crisis of 2008–2009. Journal of Intellectual Capital, 17(4), 758–775. doi: 10.1108/JIC-02-2016-0029
- Shakina, E., & Molodchik, M. (2014). Intangible-driven value creation: supporting and obstructing factors. Measuring Business Excellence, 18(3), 87–100. doi: 10.1108/MBE-12-2013-0063
- Shao, W., & Lin, W. (2002). Technical efficiency analysis of information technology investments: a two-stage empirical investigation. Information & Management, 39(5), 391–401. doi: 10.1016/S0378-7206(01)00105-7
- Sharma, S., Sylwester, K., & Heru, M. (2007). Decomposition of total factor productivity growth in U.S. states. The Quarterly Review of Economics and Finance, 47(2), 215–241.
- Shchetynin, Y. (2015). Effects of imports on technical efficiency in Russian food industry. Applied Econometrics, 37(1), 27–42.
- Shchetynin, Y., & Nazrullaeva, Eu. (2012). Effects of fixed capital investments on technical efficiency in food industry. Applied Econometrics, 28(4), 63–84.
- Simachev Y., & Kuzyk, M. (2019). Industrial Development, Structural Changes, and Industrial Policy in Russia. In Exploring the Future of Russia's Economy and Markets: Towards Sustainable Economic Development (pp. 69–106). Emerald Group Publishing Limited.
- Simachev, Y., Kuzyk, M., & Feygina, V. (2014). The nature of innovation channels at the micro level: evidence from Russian manufacturing firms. Journal of Chinese Economic and Business Studies, 12(2), 103–123.
- Solow, R. (1957). Technical Change and the Aggregate Production Function. The Review of Economics and Statistics, 39(3), 312–320.
- Soltysova, Z., & Bednar, S. (2015). Complexity management in terms of mass customized manufacturing. Polish Journal of Management Studies, 12(2), 139–149.
- Spiezia, V. (2011). Are ICT users more innovative?: an analysis of ICT-enabled innovation in OECD firms. OECD Journal: Economic Studies, 2011(1), 1–21.
- Sun, Z., & Li, J. (2017). The multifaceted role of information and communication technology in innovation: evidence from Chinese manufacturing firms. Asian Journal of Technology Innovation, 25(1), 168–183. doi: 10.1080/19761597.2017.1302559
- Tambe, P., & Hitt, L. M. (2014). Measuring Information Technology Spillovers. Information Systems Research, 25(1), 53–71. doi: 10.1287/isre.2013.0498
- Tang, J., & Wang, W. (2020). Technological frontier, technical efficiency and the post-2000 productivity slowdown in Canada. Structural Change and Economic Dynamics, 55, 12–25. doi: 10.1016/j.strueco.2020.06.003
- Teece, D. (2018). Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Research Policy, 47(8), 1367–1387. doi: 10.1016/j.respol.2017.01.015
- Thum-Thysen, A., Voigt, P., Bilbao-Osorio, B., Maier, C., & Ognyanova, D. (2017). Unlocking Investment in Intangible Assets European Union. Discussion Paper 047. Retrieved from https://ec.europa.eu/info/sites/info/files/economy-finance/dp047_en.pdf
- Van Ark, B., Hao, J. X., Corrado, C., & Hulten, C. (2009). Measuring intangible capital and its contribution to economic growth in Europe. European Investment Bank, 14, 62–93.
- Voskoboynikov, I. (2020). Structural change, expanding informality and labor productivity growth in Russia. Review of Income and Wealth, 66(2), 394–417. doi: 10.1111/roiw.12417
- Yang, S., Zhou, Y., & Song, L. (2018). Determinants of Intangible Investment and Its Impacts on Firms’ Productivity: Evidence from Chinese Private Manufacturing Firms. China & World Economy, 26, 1–26.
- Zemtsov, S., Barinova, V., & Semenova, R. (2019). The Risks of Digitalization and the Adaptation of Regional Labor Markets in Russia. Foresight and STI Governance, 13(2), 84–96. doi: 10.17323/2500-2597.2019.2.84.96