Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Estimations of time-invariant (TI) and time-variant (TVD) models by the two time periods and the groups of firms
| M | M | M | M | M | M | |
|---|---|---|---|---|---|---|
| Production frontier (dependent variable ln_y) | ||||||
| Number of observations | 1,472 | 1,443 | 1472 | 770 | 1443 | 764 |
| ln_fa_real | 0.107*** (0.014) | 0.073*** (0.007) | 0.064*** (.018) | 0.076*** (0.010) | 0.047*** (0.016) | 0.033** (0.014) |
| ln_assets | 0.339*** (0.016) | 0.430*** (0.019) | 0.294*** (0.027) | 0.462*** (0.029) | 0.42*** (0.028) | 0.311*** (0.030) |
| ln_l | 0.552*** (0.023) | 0.483*** (0.024) | 0.642*** (0.038) | 0.450*** (0.038) | 0.558*** (0.032) | 0.522*** (0.033) |
| ln_ita_real | 0.010*** (0.004) | 0.014*** (0.003) | 0.014*** (0.005) | 0.014*** (0.005) | 0.004 (0.005) | 0.005 (0.006) |
| t | 0.071 (0.045) | 0.039*** (0.008) | 0.234*** (0.031) | 0.016 (0.014) | ||
| const | 4.542*** (0.202) | 4.729*** (0.186) | 6.148 (0.651) | 4.281*** (0.284) | 2.920*** (0.318) | 6.878*** (0.336) |
| eta | −0.047** (0.019) | −0.042*** (0.012) | −0.240*** (0.022) | 0.001 (0.012) | ||
| −1.373*** (0.067) | −2.219 (0.102) | |||||
| −0.136** (0.070) | 0.116 (0.056) | |||||
Strategies and policy tools to support digitalisation according to the technology intensity of firms
| H | L | |
|---|---|---|
| Develop an intangible technology asset |
Effects
Policy tools |
Effects
Policy tools |
| Acquire an intangible technology asset |
Effects
Policy tools |
Effects
Policy tools |
Panel Estimation of the Stochastic Production Frontier for the full sample of firms
| M | M | M | M | |
|---|---|---|---|---|
| 1. Production frontier (dependent variable ln_y) | ||||
| Number of observations | 2,915 | 2,915 | 1,381 | 1,534 |
| ln_fa_real | 0.106*** (0.007) | 0.106*** (0.007) | 0.124*** (0.011) | 0.096*** (0.009) |
| ln_assets | 0.347*** (0.013) | 0.354*** (0.013) | 0.325*** (0.019) | 0.381*** (0.018) |
| ln_l | 0.561*** (0.016) | 0.557*** (0.017) | 0.507*** (0.026) | 0.591*** (0.023) |
| ln_ita_real | 0.019*** (0.006) | −0.011* (0.007) | −0.018 (0.011) | −0.023 (0.017) |
| t | 0.016** (0.006) | 0.017* (0.009) | 0.008 (0.031) | 0.082*** (0.024) |
| ita_t | −0.003*** (0.001) | −0.003*** (0.001) | −0.004 (0.004) | −0.001 (0.003) |
| const | 4.732*** (0.136) | 4.753*** (0.135) | 5.294*** (0.201) | 3.758*** (0.242) |
| 2. Inefficiency equation (dependent variable) | ||||
| ln_ita_real_t | −0.108*** (0.011) | −0.178*** (0.021) | −0.065*** (0.013) | |
| t | −0.002*** (0.016) | −0.177*** (0.066) | 0.235*** (0.051) | |
| const | 0.072 (0.048) | 0.362 (0.084) | 0.806*** (0.137) | −1.583*** (0.403) |
| 3. Stochastic noise (dependent variable) | ||||
| const | −1.495*** (0.058) | −1.424 (0.014) | −1.336 (0.074) | −1.447 (0.094) |
Panel Estimation of the Stochastic Production Frontier for sub-samples of firms by R&D expenditures and R&D intensity
| M | M | M | M | |
|---|---|---|---|---|
| Production frontier (dependent variable ln_y) | ||||
| Number of observations | 1,472 | 1,443 | 734 | 2,181 |
| ln_fa_real | 0.106*** (0.017) | 0.112*** (0.007) | 0.109*** (0.013) | 0.076*** (0.007) |
| ln_assets | 0.426*** (0.028) | 0.332*** (0.015) | 0.350*** (0.016) | 0.397*** (0.019) |
| ln_l | 0.599*** (0.034) | 0.552*** (0.02) | 0.531*** (0.023) | 0.522*** (0.025) |
| ln_ita_real | −0.120*** (0.026) | −0.021*** (0.009) | −0.019** (0.009) | 0.008 (0.008) |
| t | 0.004 (0.048) | −0.015 (0.009) | 0.026* (0.013) | 0.021** (0.009) |
| ita_t | 0.003 (0.004) | 0.001 (0.001) | −0.0001 (0.001) | −0.004*** (0.001) |
| const | 4.021*** (0.377) | 5.082*** (0.149) | 4.838*** (0.190) | 4.922*** (0.17) |
| Inefficiency equation (dependent variable) | ||||
| ln_ita_real_t | −0.262*** (0.046) | −0.158*** (0.018) | −0.125*** (0.016) | −0.102*** (0.012) |
| t | 0.296*** (0.057) | −0.112*** (0.023) | −0.008 (0.023) | −0.036*** (0.021) |
| const | −0.030 (0.495) | 0.668*** (0.096) | 0.373*** (0.119) | 0.445*** (0.10) |
| Stochastic noise (dependent variable) | ||||
| const | −1.568 (0.111) | −1.315 (0.017) | −1.336 (0.065) | −2.082 (0.018) |