Have a personal or library account? Click to login
Insights from Comparative Analysis of Radar and Optical Vegetation Indices: A Case Study in Gilan Province, Iran Cover

Insights from Comparative Analysis of Radar and Optical Vegetation Indices: A Case Study in Gilan Province, Iran

Open Access
|Dec 2025

References

  1. Çolak, E., Chandra, M. & Sunar F. (2021).The use of sentinel 1/2 vegetation indexes with gee time series data in detecting land cover changes in the sinop nuclear power plant construction site. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 701‒706. DOI: 10.5194/isprs-archives-XLIIIB3-2021-701-2021.
  2. Cui, W., Sun, Z., Ma, H. & Wu S. (2020). The correlation analysis of atmospheric model accuracy based on the pearson correlation criterion. IOP Conference Series: Materials Science and Engineering, 780 (3), 032045. DOI: 10.1088/1757-899X/780/3/032045.
  3. De La Iglesia Martinez, A. & Labib S. (2023). Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environ. Res., 220, 115155. DOI: 10.1016/j.envres.2022.115155.
  4. Gonenc, A. & Ozerdem M.S. (2019). Comparison of NDVI and RVI vegetation indices using satellite images. In 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 1‒4). IEEE. DOI: 10.1109/Agro-Geoinformatics.2019.8820225.
  5. Gupta, R. (1993). Comparative study of AVHRR ratio vegetation index and normalized difference vegetation index in district level agricultural monitoring. Int. J. Remote Sens., 14(1), 53‒73. DOI: 10.1080/01431169308904321.
  6. Hu, X., Li, L., Huang, J., Zeng, Y., Zhang, S., Su, Y., Hong, Y. & Hong Z. (2024). Radar vegetation indices for monitoring surface vegetation: Developments, challenges, and trends. Sci. Total Environ., 945, 173974. DOI: 10.1016/j.scitotenv.2024.173974.
  7. Chhabra, A., Rüdiger, C., Yebra, M., Jagdhuber, T. & Hilton J. (2022). RADAR-vegetation structural perpendicular index (R-VSPI) for the quantification of wildfire impact and post-fire vegetation recovery. Remote Sensing, 14(13), 3132. DOI: 10.3390/rs14133132.
  8. Kim, Y.-H., Oh, J.-H. & Kim Y.-I. (2014). Comparative analysis of the multispectral vegetation indices and the radar vegetation index. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(6), 607‒615. DOI: 10.7848/ksgpc.2014.32.6.607.
  9. Komaroff, E. (2020). Relationships between p-values and Pearson correlation coefficients, type 1 errors and effect size errors, under a true null hypothesis. Journal of Statistical Theory and Practice, 14(3), 49. DOI: 10.1007/s42519-020-00115-6.
  10. Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S.L. & Chen X. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Res., 157, 111‒123. DOI: 10.1016/j.fcr.2013.12.018.
  11. Nicolau, A.P., Flores-Anderson, A., Griffin, R., Herndon, K. & Meyer F.J. (2021). Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest. International Journal of Applied Earth Observation and Geoinformation, 94, 102214. DOI: 10.1016/j.jag.2020.102214.
  12. Shao, Y., Hu, Q., Guo, H., Lu, Y., Dong, Q. & Han C. (2003). Effect of dielectric properties of moist salinized soils on backscattering coefficients extracted from RADARSAT image. IEEE Transactions on Geoscience and Remote Sensing, 41(8), 8, 1879‒1888. DOI: 10.1109/TGRS.2003.813499.
  13. Shobairi, S.O.R., Lingxiao, S., Haiyan, Z., Chunlan, L., Jing, H. & Beirami B.A. (2024). Monitoring the temporal-spatial changes of vegetation cover and drivers in Tian Shan ecoregions, China. Folia Forestalia Polonica, Ser. A. Forestry, 66(3), 155‒182. DOI: 10.2478/ffp-2024-0013.
  14. Spadoni, G.L., Cavalli, A., Congedo, L. & Munafò M. (2020). Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sensing Applications: Society and Environment, 20, 100419. DOI: 10.1016/j.rsase.2020.100419.
  15. Tsokas, A., Rysz, M., Pardalos, P.M. & Dipple K. (2022). SAR data applications in earth observation: An Overview. Expert Systems with Applications, 205, 117342. DOI: 10.1016/j.eswa.2022.117342.
  16. Wu, G., Zhou, Z., Zhao, X., Huang, D., Long, Y. & Peng R. (2025). Study on correlation between crop optical vegetation index and radar parameters and its influencing factors based on plot unit. Geocarto International, 40(1), 2453621. DOI: 10.1080/10106049.2025.2453621.
  17. Xue, J. & Su B. (2017). Significant remote sensing vegetation indices: A review of developments and Applications. Journal of Sensors, 2017(1), 1353691. DOI: 10.1155/2017/1353691.
  18. Zhou, Y., Flynn K.C., Gowda, P.H., Wagle, P., Ma, S., Kakani, V.G. & Steiner J.L. (2021). The potential of active and passive remote sensing to detect frequent harvesting of alfalfa. International Journal of Applied Earth Observation and Geoinformation, 104, 102539. DOI: 10.1016/j.jag.2021.102539.
DOI: https://doi.org/10.2478/eko-2025-0023 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 205 - 211
Submitted on: Apr 5, 2025
|
Accepted on: Jul 30, 2025
|
Published on: Dec 18, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Behnam Asghari Beirami, Seyed Omid Reza Shobairi, published by Slovak Academy of Sciences, Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.