References
- Abuseif, M. (2023). The thermal effect of various local park settings: A simulation-based case study of Sunshine Coast, Australia. Architecture, 3(2), 195–212. DOI: 10.3390/architecture3020012.
- Angermeier, P.L. (2000). The natural imperative for biological conservation. Conserv. Biol., 14(2), 373–381. DOI: 10.1046/j.1523-1739.2000.98362.x.
- Bartelheimer, M. & Poschlod P. (2016). Functional characterizations of Ellenberg indicator values – a review on ecophysiological determinants. Funct. Ecol., 30(4), 506–516. DOI: 10.1111/1365-2435.12531.
- Battisti, C. & Fanelli G. (2016). Applying indicators of disturbance from plant ecology to vertebrates: The hemeroby of bird species. Ecological Indicators, 61, 799–805. DOI: 10.1016/j.ecolind.2015.10.032.
- Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Bot. Hung., 39, 97–181.
- Buzuk, G.N. (2017). Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2(76), 31–37.
- Dengler, J., Jansen, F., Chusova, O., Hüllbusch, E., Nobis, M. P., Van Meerbeek, K., Axmanová, I., Bruun, H. H., Chytrý, M., Guarino, R., Karrer, G., Moeys, K., Raus, T., Steinbauer, M. J., Tichý, L., Tyler, T., Batsatsashvili, K., Bita-Nicolae, C., Didukh, Y., Diekmann, M., Englisch, T., Fernández-Pascual, E., Frank, D., Graf, U., Hájek, M., Jelaska, S.D., Jiménez-Alfaro, B., Julve, P., Nakhutsrishvili, G., Ozinga, W.A., Ruprecht, E.-K., Šilc, U., Theurillat, J.-P. & Gillet F. (2023). Ecological indicator values for Europe (EIVE) 1.0. Vegetation Classification and Survey, 4, 7–29. DOI: 10.3897/VCS.98324.
- Didukh, Y.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocenter.
- Diekmann, M. (1995). Use and improvement of Ellenberg’s indicator values in deciduous forests of the Boreo-nemoral zone in Sweden. Ecography, 18(2), 178–189. DOI: 10.1111/j.1600-0587.1995.tb00339.x.
- Dzwonko, Z. (2001). Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J. Appl. Ecol., 38(5), 942–951. DOI: 10.1046/j.1365-2664.2001.00649.x
- Ellenberg, H. (1979). Zeigerwerte der Gefisspflanzen Mitteleuropas. Scripta Geobotanica, 9, 1‒122.
- Frank, D. & Klotz S. (1990). Biologisch-ökologische Daten zur Flora der DDR. Wissenschaftliche Beiträge der Martin-Luther-Universität Halle-Wittenberg, 31, 1‒167.
- Halecki, W., Stachura, T., Fudała, W., Stec, A. & Kuboń S. (2023). Assessment and planning of green spaces in urban parks: A review. Sustainable Cities and Society, 88, 104280. DOI: 10.1016/j.scs.2022.104280.
- Haselhoff, T., Braun, T., Fiebig, A., Hornberg, J., Lawrence, B.T., Marwan, N. & Moebus S. (2023). Complex networks for analyzing the urban acoustic environment. Ecological Informatics, 78, 102326. DOI: 10.1016/j.ecoinf.2023.102326.
- Hill, A. (1910). The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. The Journal of Physiology, 40, i--vii. https://www.bibsonomy.org/bibtex/22354baaa00f618667137ac257a07f844/quantentunnel
- Hill, M.O., Roy, D.B. & Thompson K. (2002). Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J. Appl. Ecol., 39(5), 708–720. DOI: 10.1046/j.1365-2664.2002.00746.x.
- Hornschuch, F. & Riek W. (2009). Bodenheterogenität als Indikator von Naturnähe? 1. Bewertung der Natürlichkeit anhand verschiedener Kompartimente und Diversitätsebenen unter besonderer Berücksichtigung des Bodens (Literaturstudie). Waldökologie Landsch Naturschutz, 7, 35–53.
- Kunakh, O., Lisovets, O., Podpriatova, N. & Zhukov O. (2024). Plant community hemeroby is a reliable indicator of the dynamics of reclamation of lands disturbed by mining. Ekológia (Bratislava), 43(1), 43–53. DOI: 10.2478/eko-2024-0005.
- Kunakh, O.M., Lisovets, O.I., Yorkina, N.V. & Zhukova Y.O. (2021). Phytoindication assessment of the effect of reconstruction on the light regime of an urban park. Biosystems Diversity, 29(3), 84–93. DOI: 10.15421/012135.
- Lopez-Cabeza, V.P., Alzate-Gaviria, S., Diz-Mellado, E., Rivera-Gomez, C. & Galan-Marin C. (2022). Albedo influence on the microclimate and thermal comfort of courtyards under Mediterranean hot summer climate conditions. Sustainable Cities and Society, 81, 103872. DOI: 10.1016/j.scs.2022.103872.
- Mandaric, L., Mor, J.-R., Sabater, S. & Petrovic M. (2018). Impact of urban chemical pollution on water quality in small, rural and effluent-dominated Mediterranean streams and rivers. Sci. Total Environ., 613–614, 763–772. DOI: 10.1016/j.scitotenv.2017.09.128.
- Mexia, T., Vieira, J., Príncipe, A., Anjos, A., Silva, P., Lopes, N., Freitas, C., Santos-Reis, M., Correia, O., Branquinho, C. & Pinho P. (2018). Ecosystem services: Urban parks under a magnifying glass. Environ. Res., 160, 469–478. DOI: 10.1016/j.envres.2017.10.023.
- Molozhon, K.O., Lisovets, O.I., Kunakh, O.M. & Zhukov O.V. (2023). The structure of beta-diversity explains why the relevance of phytoindication increases under the influence of park reconstruction. Regulatory Mechanisms in Biosystems, 14(4), 634–651. DOI: 10.15421/022392.
- Moravčík, M., Petlušová, V. & Petluš P. (2024). Influence of morphometric relief parameters on soil depth changes and humus horizon thickness in relation to erosion-accumulation processes: A study in the Ipeľská Pahorkatina Hills, Slovakia. Ekológia (Bratislava), 43(1), 1–15. DOI: 10.2478/eko-2024-0001.
- Otte, A., Bissels, S. & Waldhardt R. (2006). Samen-, Keimungs und Habitateigenschaften: Welche Parameter erklären Veränderungstendenzen in der Häufigkeit von Ackerwildkräutern in Deutschland? Journal of Plant Diseases and Protection Sonderheft, 20, 507–516.
- Piracha, A. & Chaudhary M.T. (2022). Urban air pollution, urban heat island and human health: A review of the literature. Sustainability, 14(15), 9234. DOI: 10.3390/su14159234.
- Podpriatova, N., Kunakh, O. & Zhukov O. (2023). Which index is better for assessing the success of reclamation: Naturalness or hemeroby? Biosystems Diversity, 32(1), 30–42. DOI: 10.15421/012403.
- Ribeiro, H.V., Rybski, D. & Kropp J.P. (2019). Effects of changing population or density on urban carbon dioxide emissions. Nature Communications, 10(1), 3204. DOI: 10.1038/s41467-019-11184-y.
- Sengl, P., Magnes, M., Erdős, L. & Berg C. (2017). A test of naturalness indicator values to evaluate success in grassland restoration. Community Ecol., 18(2), 184–192. DOI: 10.1556/168.2017.18.2.8
- Shahmohamadi, P., Che-Ani, A.I., Maulud, K.N.A., Tawil, N.M. & Abdullah N.A.G. (2011). The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Studies Research, 2011, 497524. DOI: 10.1155/2011/497524.
- Smith, B. & Hallo J. (2019). Informing good lighting in parks through visitors’ perceptions and experiences. International Journal of Sustainable Lighting, 21(2), 47–65. DOI: 10.26607/ijsl.v21i02.93.
- StatSoft Inc. (2014). STATISTICA Data Analysis Software System, Version 12.0, 1984-2014 (No. 13). Palo Alto: TIBCO Software Inc.
- Supronowicz, R. & Fryc I. (2019). Urban park lighting as a source of botanical light pollution. Photonics Letters of Poland, 11(3), 90. DOI: 10.4302/plp.v11i3.935.
- Šmilauer, P. & Lepš J. (2014). Multivariate Analysis of Ecological Data using CANOCO 5. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139627061.
- Ter Braak, C.J.F. & Barendregt L.G. (1986). Weighted averaging of species indicator values: Its efficiency in environmental calibration. Math. Biosci., 78(1), 57–72. DOI: 10.1016/0025-5564(86)90031-3.
- Vysotsky, G.N. (1925). Cover science. Minsk, Leningrad: Main Botanical Garden.
- Williams, N.S.G., Hahs, A.K. & Vesk P.A. (2015). Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Syst., 17(1), 78–86. DOI: 10.1016/j.ppees.2014.10.002.
- Winter, S. (2012). Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry: An International Journal of Forest Research, 85(2), 293–304. DOI: 10.1093/forestry/cps004.
- Yorkina, N., Goncharenko, I., Lisovets, O. & Zhukov O. (2022). Assessment of naturalness: The response of social behavior types of plants to anthropogenic impact. Ekológia (Bratislava), 41(2), 135–146. DOI: 10.2478/eko-2022-0014.
- Zelený, D. & Schaffers A.P. (2012). Too good to be true: Pitfalls of using mean Ellenberg indicator values in vegetation analyses. J. Veg. Sci., 23(3), 419–431. DOI: 10.1111/j.1654-1103.2011.01366.x.
- Zettler, M. L., Proffitt, C. E., Darr, A., Degraer, S., Devriese, L., Greathead, C., Kotta, J., Magni, P., Martin, G., Reiss, H., Speybroeck, J., Tagliapietra, D., Van Hoey, G. & Ysebaert T. (2013). On the myths of indicator species: Issues and further consideration in the use of static concepts for ecological applications. PLoS ONE, 8(10), e78219. DOI: 10.1371/journal.pone.0078219.
- Zhukov, A.V., Kunakh, O.N., Dubinina, Y.Y. & Ganzha D.S. (2018). Application of β-function in phytoindication to account for species response curves asymmetry. Acta Biologica Sibirica, 4(2), 32. DOI: 10.14258/abs.v4i2.4121.
- Zhukov, O., Kunakh, O., Yorkina, N. & Tutova A. (2023). Response of soil macrofauna to urban park reconstruction. Soil Ecology Letters, 5(2), 220156. DOI: 10.1007/s42832-022-0156-0.