Have a personal or library account? Click to login
Influence of Environmental Factors on Microalgae in Marine Coastal Saline Soil Cover

Influence of Environmental Factors on Microalgae in Marine Coastal Saline Soil

Open Access
|Dec 2025

References

  1. Afify, A., Sheta, M. & Elzallal A. (2023). Impact of cyanobacteria inoculation on some physical and chemical properties of soils with different texture. Journal of Agricultural Chemistry and Biotechnology, 14, 1–6. DOI: 10.21608/jacb.2022.178369.1039.
  2. Alghanmi, H. & Muttar H. (2018). Effect of environmental factors on cyano-bacteria richness in some agricultural soils. Geomicrobiol. J., 36, 1–10. DOI: 10.1080/01490451.2018.1517196.
  3. Andreieva, V.M. (1998). Soil and aerophilic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales) (in Russian). Nauka.
  4. Arabadzhy-Tipenko, L.I., Solonenko, A.N. & Bren A.G. (2019). Cyanoprokaryota of the salt marshes at the Pryazov National Natural Park, Ukraine. International Journal on Algae, 21(4), 299–310. DOI: 10.1615/InterJAlgae.v21.i4.10,
  5. Bischoff, H.W. & Bold H.C. (1963). Phycological studies IV: Some soil algae from Enchanted Rock and related algal species (No. 6318). Austin: University of Texas.
  6. Bold, H.C. (1949). The morphology of Chlamydomonas chlamydogama sp. nov. Bulletin of the Torrey Botanical Club, 76, 101–108.
  7. Bren, O.G., Solonenko, A.M. & Podorozhny S.M. (2022). Species structure of algae of the saline coastal reservoirs of the Pryazov National Natural Park, Ukraine. Int. J. Algae, 24(2), 105–120. DOI: 10.1615/InterJAlgae.v24.i2.10
  8. Chamizo, S., Mugnai, G., Rossi, F., Certini, G. & De Philippis R. (2018). Cyano-bacteria inoculation improves soil stability and fertility on different textured soils: Gaining insights for applicability in soil restoration. Frontiers in Environmental Science, 6, 49. DOI: 10.3389/fenvs.2018.00049.
  9. Coker, J. (2019). Recent advances in understanding extremophiles. F1000Research, 8, 1917. DOI: 10.12688/f1000research.20765.1.
  10. Ettl, H. & Gärtner G. (1988). Süßwasserflora von Mitteleuropa (in German). Vol. 10. G. Fischer Verlag.
  11. Fontaneto, D. (2011). Biogeography of microscopic organisms: Is everything small everywhere? Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511974878.
  12. Greening, C., Grinter, R. & Chiri E. (2019). Uncovering the Metabolic Strategies of the Dormant Microbial Majority: towards Integrative Approaches. mSystems. 4. DOI: 10.1128/mSystems.00107-19.
  13. Guiry, M.D. & Guiry G.M. (2023). AlgaeBase: World-wide electronic publication. National University of Ireland, Galway. https://www.algaebase.org
  14. Gunde-Cimerman, N., Plemenitas, A. & Oren A. (2018). Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev., 42. DOI: 10.1093/femsre/fuy009.
  15. Hasle, G.R. & Heimdal B.R. (1970). Some species of the centric diatom genus Thalassiosira studied in the light and electron microscopes. In J. Gerloff & J.B. Cholnoky (Eds.), Diatomaceae II. Beihefte zur Nova Hedwigia, 31, 559‒589.
  16. Hammer, Ø., Harper, D. & Ryan P. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.
  17. Jebin, J. & Joseph George R. (2024). A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. J. Phycol., 60. DOI: 10.1111/jpy.13444.
  18. Karsten, U. & Holzinger A. (2012). Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb. Ecol., 63, 51–63. DOI: 10.1007/s00248-011-9924-6.
  19. Kimbrel, J., Ballor, N., Wu, Y.-W., David, M., Hazen, T., Simmons, B., Singer, S. & Jansson J. (2018). Microbial community structure and functional potential along a hypersaline gradient. Frontiers in Microbiology, 9. DOI: 10.3389/fmicb.2018.01492.
  20. Komárek, J. (2013). Cyanoprokaryota. 3. Heterocytous genera. Süßwasserflora von Mitteleuropa, Vol. 19/3. Springer Spektrum.
  21. Komárek, J. & Anagnostidis K. (1998). Cyanoprokaryota. 1. Chroococcales Süßwasserflora von Mitteleuropa, Vol. 19/1. G. Fischer Verlag.
  22. Komárek, J. & Anagnostidis K. (2005). Cyanoprokaryota. 2. Oscillatoriales Süßwasserflora von Mitteleuropa, Vol. 19/2. Elsevier Spectrum.
  23. Kostikov, I.Yu., Romanenko, P.O., Demchenko, E.M., Darienko, T.M., Mykhailyuk, T.I., Rybchynsky, O.V. & Solonenko A.M. (2001). Algae of soils of Ukraine: History and research methods (in Ukrainian). Phytosocial Center.
  24. Krammer, K. & Lange-Bertalot H. (1986–2004). Bacillariophyceae (in German). Parts 1–4. Gustav Fischer Verlag.
  25. Lennon, J., Aanderud, Z., Lehmkuhl, B. & Schoolmaster D. (2012). Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology, 93, 1867–1879. DOI: 10.1890/11-1745.1.
  26. Li, H., Zhang, X., Guo, X., Song, Y. & Gong J. (2015). Diversity and distribution of cyanobacteria in coastal saline soils. Microbiology China, 42, 957–967. DOI: 10.13344/j.microbiol.china.140897.
  27. Locey, K. (2010). Synthesizing traditional biogeography with microbial ecology: The importance of dormancy. J. Biogeogr., 37, 1835–1841. DOI: 10.1111/j.1365-2699.2010.02357.x.
  28. Martiny, J. (2015). Dispersal and the microbiome: Learning how fast and how far microorganisms move will help us better understand the diversity of microbial communities. Microbe Magazine, 10, 191–196. DOI: 10.1128/microbe.10.191.1.
  29. Matos, Â., Saldanha-Corrêa, F., Hurtado, G., Vadiveloo, A. & Moheimani N. (2024). Influence of desalination concentrate medium on microalgal metabolism, biomass production and biochemical composition. J. Chem. Technol. Biotechnol., 99, 321‒329. DOI: 10.1002/jctb.7565.
  30. Mera, R., Torres, E. & Abalde J. (2015). Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: Implications for the optimization of algal culture media. Journal of Phycology, 52, 75‒88. DOI: 10.1111/jpy.12367.
  31. Morkoyunlu Yüce, A. & Altundağ H. (2020). Assessment of the relationship between some physico-chemical properties of soil and soil algae in micro basin scale in Kocaeli. Journal of Chemical Metrology, 14, 169–176. DOI: 10.25135/jcm.43.2005.1652.
  32. Oksanen, J., Blanchet, F.G., Friendly, R.M., Kindt, F.GB., Legendre, P., McG-linn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner H. (2017). vegan: Community Ecology Package (Version 2.4-2). https://cran.r-project.org
  33. Rossi, F., Mugnai, G. & De Philippis R. (2018). Complex role of the polymeric matrix in biological soil crusts. Plant Soil, 429, 19–34. DOI: 10.1007/s11104-017-3441-4.
  34. Ruhl, I., Grasby, S., Haupt, E. & Dunfield P. (2018). Analysis of microbial communities in natural halite springs reveals a domain-dependent relationship of species diversity to osmotic stress. Environmental Microbiology Reports, 10, 695‒703. DOI: 10.1111/1758-2229.12695.
  35. Sánchez-Otero, M.-G., Quintana-Castro, R., Chávez, J. G., Peña, C. & Oliart-Ros R. (2019). Unique microorganisms inhabit extreme soils. In A. Kumar & S. Sharma (Eds.), Microbes and enzymes in soil health and bioremediation (pp. 39–73). Singapore: Springer. DOI: 10.1007/978-981-13-9117-0_3.
  36. Schulz, K., Mikhailyuk, T., Dreßler, M., Leinweber, P. & Karsten U. (2016). Biological soil crusts from coastal dunes at the Baltic Sea: Cyanobacterial and algal biodiversity and related soil properties. Microb. Ecol., 71, 178–193. DOI: 10.1007/s00248-015-0691-7.
  37. Sikorski, Ł. (2021). Effects of sodium chloride on algae and crustaceans— the neighbouring links of the water trophic chain. Water, 13, 2493. DOI: 10.3390/w13182493.
  38. Solonenko, A.M. & Bren O.G. (2020). Floristic composition and taxonomic structure of algae in the hyperhaline reservoirs of the northwestern Azov Sea coast (Ukraine). Int. J. Algae, 22(4), 373–382. DOI: 10.1615/Inter-JAlgae.v22.i4.60.
  39. Sommer, V., Karsten, U. & Glaser K. (2020). Halophilic algal communities in biological soil crusts isolated from potash tailings pile areas. Frontiers in Ecology and Evolution, 8. DOI: 10.3389/fevo.2020.00046.
  40. Song, X., Bo, Y., Feng, Y., Tan, Y., Zhou, C., Yan, X., Ruan, R., Xu, Q. & Cheng P. (2022). Potential applications for multifunctional microalgae in soil improvement. Frontiers in Environmental Science, 10. DOI: 10.3389/fenvs.2022.1035332.
  41. State standard of Ukraine 7908:2015 (2016). Soil quality. Determination of chloride ion in water extract (in Ukrainian). Kyiv: Publishing State Enterprise Ukrainian Research and Training Center for Standardization, Certification and Quality.
  42. State standard of Ukraine 7943:2015 (2016). Soil quality. Determination of carbonate and bicarbonate ions in water extract (in Ukrainian). Kyiv: Publishing State Enterprise Ukrainian Research and Training Center for Standardization, Certification and Quality.
  43. State standard of Ukraine 7945:2015 (2016). Soil quality. Determination of calcium and magnesium ions in aqueous extract (in Ukrainian). Kyiv: Publishing State Enterprise Ukrainian Research and Training Center for Standardization, Certification and Quality.
  44. State standard of Ukraine 11465:2001 (2002). Soil quality. Determination of dry matter and moisture by mass. Gravimetric method (in Ukrainian).
  45. Stenström, J., Svensson, K. & Johansson M. (2001). Reversible transition between active and dormant microbial states in soil. FEMS Microbiol. Ecol., 36, 93–104. DOI: 10.1016/S0168-6496(01)00122-2.
  46. Tsarenko, P.M. (1990). Short determinant of chlorococcal algae of the Ukrainian SSR (in Ukrainian). Kyiv: Naukova Dumka.
  47. Vinogradova, O.M. (2012). Cyanoprokaryota in hyperhaline environments in Ukraine (in Ukrainian). Kyiv: Alterpress.
  48. Wu, L., Farías, M., Torres, R., Xia, L., Song, S., Saber, A. & Lan S. (2022). Salinity affects microbial composition and function in artificially induced biocrusts: Implications for cyanobacterial inoculation in saline soils. Soil Biol. Biochem., 170, 108691. DOI: 10.1016/j.soilbio.2022.108691.
  49. Young, K., Reed, S., Morton, M. & Bowker M. (2024). Inoculated biocrust cover and functions diverged over a gradient of soil textures and water availability. Restor. Ecol., 32, 14125. DOI: 10.1111/rec.14125.
  50. Zhang, G., Bai, J., Tebbe, C., Zhao, Q., Jia, J., Wang, W., Wang, X. & Yu L. (2020). Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environmental Microbiology, 23, 1020‒1037. DOI: 10.1111/1462-2920.15281.
DOI: https://doi.org/10.2478/eko-2025-0011 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 91 - 99
Submitted on: Mar 14, 2025
|
Accepted on: Sep 22, 2025
|
Published on: Dec 18, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Oleksandr Bren, Oksana Bren, Anatoliy Solonenko, published by Slovak Academy of Sciences, Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.