References
- Afify, A., Sheta, M. & Elzallal A. (2023). Impact of cyanobacteria inoculation on some physical and chemical properties of soils with different texture. Journal of Agricultural Chemistry and Biotechnology, 14, 1–6. DOI: 10.21608/jacb.2022.178369.1039.
- Alghanmi, H. & Muttar H. (2018). Effect of environmental factors on cyano-bacteria richness in some agricultural soils. Geomicrobiol. J., 36, 1–10. DOI: 10.1080/01490451.2018.1517196.
- Andreieva, V.M. (1998). Soil and aerophilic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales) (in Russian). Nauka.
- Arabadzhy-Tipenko, L.I., Solonenko, A.N. & Bren A.G. (2019). Cyanoprokaryota of the salt marshes at the Pryazov National Natural Park, Ukraine. International Journal on Algae, 21(4), 299–310. DOI: 10.1615/InterJAlgae.v21.i4.10,
- Bischoff, H.W. & Bold H.C. (1963). Phycological studies IV: Some soil algae from Enchanted Rock and related algal species (No. 6318). Austin: University of Texas.
- Bold, H.C. (1949). The morphology of Chlamydomonas chlamydogama sp. nov. Bulletin of the Torrey Botanical Club, 76, 101–108.
- Bren, O.G., Solonenko, A.M. & Podorozhny S.M. (2022). Species structure of algae of the saline coastal reservoirs of the Pryazov National Natural Park, Ukraine. Int. J. Algae, 24(2), 105–120. DOI: 10.1615/InterJAlgae.v24.i2.10
- Chamizo, S., Mugnai, G., Rossi, F., Certini, G. & De Philippis R. (2018). Cyano-bacteria inoculation improves soil stability and fertility on different textured soils: Gaining insights for applicability in soil restoration. Frontiers in Environmental Science, 6, 49. DOI: 10.3389/fenvs.2018.00049.
- Coker, J. (2019). Recent advances in understanding extremophiles. F1000Research, 8, 1917. DOI: 10.12688/f1000research.20765.1.
- Ettl, H. & Gärtner G. (1988). Süßwasserflora von Mitteleuropa (in German). Vol. 10. G. Fischer Verlag.
- Fontaneto, D. (2011). Biogeography of microscopic organisms: Is everything small everywhere? Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511974878.
- Greening, C., Grinter, R. & Chiri E. (2019). Uncovering the Metabolic Strategies of the Dormant Microbial Majority: towards Integrative Approaches. mSystems. 4. DOI: 10.1128/mSystems.00107-19.
- Guiry, M.D. & Guiry G.M. (2023). AlgaeBase: World-wide electronic publication. National University of Ireland, Galway. https://www.algaebase.org
- Gunde-Cimerman, N., Plemenitas, A. & Oren A. (2018). Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev., 42. DOI: 10.1093/femsre/fuy009.
- Hasle, G.R. & Heimdal B.R. (1970). Some species of the centric diatom genus Thalassiosira studied in the light and electron microscopes. In J. Gerloff & J.B. Cholnoky (Eds.), Diatomaceae II. Beihefte zur Nova Hedwigia, 31, 559‒589.
- Hammer, Ø., Harper, D. & Ryan P. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.
- Jebin, J. & Joseph George R. (2024). A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. J. Phycol., 60. DOI: 10.1111/jpy.13444.
- Karsten, U. & Holzinger A. (2012). Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb. Ecol., 63, 51–63. DOI: 10.1007/s00248-011-9924-6.
- Kimbrel, J., Ballor, N., Wu, Y.-W., David, M., Hazen, T., Simmons, B., Singer, S. & Jansson J. (2018). Microbial community structure and functional potential along a hypersaline gradient. Frontiers in Microbiology, 9. DOI: 10.3389/fmicb.2018.01492.
- Komárek, J. (2013). Cyanoprokaryota. 3. Heterocytous genera. Süßwasserflora von Mitteleuropa, Vol. 19/3. Springer Spektrum.
- Komárek, J. & Anagnostidis K. (1998). Cyanoprokaryota. 1. Chroococcales Süßwasserflora von Mitteleuropa, Vol. 19/1. G. Fischer Verlag.
- Komárek, J. & Anagnostidis K. (2005). Cyanoprokaryota. 2. Oscillatoriales Süßwasserflora von Mitteleuropa, Vol. 19/2. Elsevier Spectrum.
- Kostikov, I.Yu., Romanenko, P.O., Demchenko, E.M., Darienko, T.M., Mykhailyuk, T.I., Rybchynsky, O.V. & Solonenko A.M. (2001). Algae of soils of Ukraine: History and research methods (in Ukrainian). Phytosocial Center.
- Krammer, K. & Lange-Bertalot H. (1986–2004). Bacillariophyceae (in German). Parts 1–4. Gustav Fischer Verlag.
- Lennon, J., Aanderud, Z., Lehmkuhl, B. & Schoolmaster D. (2012). Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology, 93, 1867–1879. DOI: 10.1890/11-1745.1.
- Li, H., Zhang, X., Guo, X., Song, Y. & Gong J. (2015). Diversity and distribution of cyanobacteria in coastal saline soils. Microbiology China, 42, 957–967. DOI: 10.13344/j.microbiol.china.140897.
- Locey, K. (2010). Synthesizing traditional biogeography with microbial ecology: The importance of dormancy. J. Biogeogr., 37, 1835–1841. DOI: 10.1111/j.1365-2699.2010.02357.x.
- Martiny, J. (2015). Dispersal and the microbiome: Learning how fast and how far microorganisms move will help us better understand the diversity of microbial communities. Microbe Magazine, 10, 191–196. DOI: 10.1128/microbe.10.191.1.
- Matos, Â., Saldanha-Corrêa, F., Hurtado, G., Vadiveloo, A. & Moheimani N. (2024). Influence of desalination concentrate medium on microalgal metabolism, biomass production and biochemical composition. J. Chem. Technol. Biotechnol., 99, 321‒329. DOI: 10.1002/jctb.7565.
- Mera, R., Torres, E. & Abalde J. (2015). Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: Implications for the optimization of algal culture media. Journal of Phycology, 52, 75‒88. DOI: 10.1111/jpy.12367.
- Morkoyunlu Yüce, A. & Altundağ H. (2020). Assessment of the relationship between some physico-chemical properties of soil and soil algae in micro basin scale in Kocaeli. Journal of Chemical Metrology, 14, 169–176. DOI: 10.25135/jcm.43.2005.1652.
- Oksanen, J., Blanchet, F.G., Friendly, R.M., Kindt, F.GB., Legendre, P., McG-linn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner H. (2017). vegan: Community Ecology Package (Version 2.4-2). https://cran.r-project.org
- Rossi, F., Mugnai, G. & De Philippis R. (2018). Complex role of the polymeric matrix in biological soil crusts. Plant Soil, 429, 19–34. DOI: 10.1007/s11104-017-3441-4.
- Ruhl, I., Grasby, S., Haupt, E. & Dunfield P. (2018). Analysis of microbial communities in natural halite springs reveals a domain-dependent relationship of species diversity to osmotic stress. Environmental Microbiology Reports, 10, 695‒703. DOI: 10.1111/1758-2229.12695.
- Sánchez-Otero, M.-G., Quintana-Castro, R., Chávez, J. G., Peña, C. & Oliart-Ros R. (2019). Unique microorganisms inhabit extreme soils. In A. Kumar & S. Sharma (Eds.), Microbes and enzymes in soil health and bioremediation (pp. 39–73). Singapore: Springer. DOI: 10.1007/978-981-13-9117-0_3.
- Schulz, K., Mikhailyuk, T., Dreßler, M., Leinweber, P. & Karsten U. (2016). Biological soil crusts from coastal dunes at the Baltic Sea: Cyanobacterial and algal biodiversity and related soil properties. Microb. Ecol., 71, 178–193. DOI: 10.1007/s00248-015-0691-7.
- Sikorski, Ł. (2021). Effects of sodium chloride on algae and crustaceans— the neighbouring links of the water trophic chain. Water, 13, 2493. DOI: 10.3390/w13182493.
- Solonenko, A.M. & Bren O.G. (2020). Floristic composition and taxonomic structure of algae in the hyperhaline reservoirs of the northwestern Azov Sea coast (Ukraine). Int. J. Algae, 22(4), 373–382. DOI: 10.1615/Inter-JAlgae.v22.i4.60.
- Sommer, V., Karsten, U. & Glaser K. (2020). Halophilic algal communities in biological soil crusts isolated from potash tailings pile areas. Frontiers in Ecology and Evolution, 8. DOI: 10.3389/fevo.2020.00046.
- Song, X., Bo, Y., Feng, Y., Tan, Y., Zhou, C., Yan, X., Ruan, R., Xu, Q. & Cheng P. (2022). Potential applications for multifunctional microalgae in soil improvement. Frontiers in Environmental Science, 10. DOI: 10.3389/fenvs.2022.1035332.
- State standard of Ukraine 7908:2015 (2016). Soil quality. Determination of chloride ion in water extract (in Ukrainian). Kyiv: Publishing State Enterprise Ukrainian Research and Training Center for Standardization, Certification and Quality.
- State standard of Ukraine 7943:2015 (2016). Soil quality. Determination of carbonate and bicarbonate ions in water extract (in Ukrainian). Kyiv: Publishing State Enterprise Ukrainian Research and Training Center for Standardization, Certification and Quality.
- State standard of Ukraine 7945:2015 (2016). Soil quality. Determination of calcium and magnesium ions in aqueous extract (in Ukrainian). Kyiv: Publishing State Enterprise Ukrainian Research and Training Center for Standardization, Certification and Quality.
- State standard of Ukraine 11465:2001 (2002). Soil quality. Determination of dry matter and moisture by mass. Gravimetric method (in Ukrainian).
- Stenström, J., Svensson, K. & Johansson M. (2001). Reversible transition between active and dormant microbial states in soil. FEMS Microbiol. Ecol., 36, 93–104. DOI: 10.1016/S0168-6496(01)00122-2.
- Tsarenko, P.M. (1990). Short determinant of chlorococcal algae of the Ukrainian SSR (in Ukrainian). Kyiv: Naukova Dumka.
- Vinogradova, O.M. (2012). Cyanoprokaryota in hyperhaline environments in Ukraine (in Ukrainian). Kyiv: Alterpress.
- Wu, L., Farías, M., Torres, R., Xia, L., Song, S., Saber, A. & Lan S. (2022). Salinity affects microbial composition and function in artificially induced biocrusts: Implications for cyanobacterial inoculation in saline soils. Soil Biol. Biochem., 170, 108691. DOI: 10.1016/j.soilbio.2022.108691.
- Young, K., Reed, S., Morton, M. & Bowker M. (2024). Inoculated biocrust cover and functions diverged over a gradient of soil textures and water availability. Restor. Ecol., 32, 14125. DOI: 10.1111/rec.14125.
- Zhang, G., Bai, J., Tebbe, C., Zhao, Q., Jia, J., Wang, W., Wang, X. & Yu L. (2020). Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environmental Microbiology, 23, 1020‒1037. DOI: 10.1111/1462-2920.15281.