Have a personal or library account? Click to login
Wildfire Risk analysis using Flammap in Semi-Arid Mediterranean Forests Cover

Wildfire Risk analysis using Flammap in Semi-Arid Mediterranean Forests

Open Access
|Jun 2025

References

  1. Ahirwar, R.M. (2023). Studies of some techniques for conservation of forest and wildlife. In Advances in environmental engineering and green technologies book series (pp. 185–191). DOI: 10.4018/978-1-6684-9034-1.ch006.
  2. AlcAsena, F., Salis, M., Ager, A.A., Castell, R. & Vega-García C. (2017). Assessing wildland fire risk transmission to communities in northern Spain. Forests, 8(2), 30. DOI: 10.3390/f8020030.
  3. Benabdeli K. (1996). Aspects physionomico-structuraux et dynamique des écosystèmes forestiers face à lapression anthropozoogène dans les monts de Tlemcen et les Monts de Dhaya (Algérie occidentale).Thèse de Doctorat, Faculté des Sciences, Université Djilali Liabès.
  4. Benzina, I., Bekdouche, F. & Bachir A.S. (2024). Post-fire dynamics of re-colonization by Cistus plants in the Aleppo pine and Cork oak forests in Bejaia region, central north Algeria. Environmental & Socio-Economic Studies, 12(2), 40–47. DOI: 10.2478/environ-2024-0011.
  5. Bitella, G., Bochicchio, R., Castronuovo, D., Lovelli, S., Mercurio, G., Rivelli, A. R., Rosati, L., D’Antonio, P., Casiero, P., Laghetti, G., Amato, M. & Rossi R. (2024). Monitoring Plant Height and Spatial Distribution of Biometrics with a Low-Cost Proximal Platform. Plants, 13(8), 1085. DOI: 10.3390/plants13081085.
  6. Bouiadjra, S.E., El Zerey, W. & Benabdeli K. (2011). Étude diachronique des changements du couvert végétal dans un écosystème montagneux par télédétection spatiale : cas des monts du Tessala (Algérie occidentale). Géographie Physique et Environnement, 5, 211‒225.
  7. Boving, I., Celebrezze, J., Salladay, R., Ramirez, A., Anderegg, L.D.L. & Moritz M. (2023). Live fuel moisture and water potential exhibit differing relationships with leaf-level flammability thresholds. Functional Ecology, 37(11), 2770–2785. DOI: 10.1111/1365-2435.14423.
  8. Brunner, I. & Godbold D.L. (2007). Tree roots in a changing world. Journal of Forest Research, 12(2), 78–82. DOI: 10.1007/s10310-006-0261-4.
  9. Burton, J.E., Penman, T.D., Filkov, A.I. & Cawson J.G. (2023). Multi-scale investigation of factors influencing moisture thresholds for litter bed flammability. Agricultural and Forest Meteorology, 337, 109514. DOI: 10.1016/j.agrformet.2023.109514.
  10. Calvo, R.C., Martínez, M.Á.V., Gómez, F.R., Salamanca, A.J.A. & Navarro-Cerrillo R.M. (2023). Improvements of fire fuels attributes maps by integrating field inventories, low density ALS, and satellite data in complex Mediterranean forests. Remote Sensing, 15(8), 2023. DOI: 10.3390/rs15082023.
  11. Cao, X. (2023). Impacts of wildfires and strategies to accelerate secondary succession: A comprehensive analysis. Theoretical and Natural Science, 8(1), 263–268. DOI: 10.54254/2753-8818/8/20240418.
  12. Chen, G., Qiu, M., Wang, P., Zhang, Y., Shindell, D. & Zhang H. (2024). Continuous wildfires threaten public and ecosystem health under climate change across continents. Frontiers of Environmental Science & Engineering, 18(10). DOI: 10.1007/s11783-024-1890-6.
  13. El Bouhissi, M., Bouidjra, S. & Benabdeli K. (2020). GIS, Forest Fire Prevention and Risk Matrix in the National Forest of Khoudida, Sidi Bel Abbes, Algeria. Open Journal of Ecology, 10(6), 356‒369. DOI: 10.4236/oje.2020.106022.
  14. El Zerey, W. (2014). Etude diachronique de la régression du couvert forestier de la plaine de Telagh (Algérie): approche par télédétection et SIG. Bulletin de l’Institut Scientifique Rabat, Section Sciences de la Vie, 36, 25‒31.
  15. Finney, M.A. (2006). An overview of FlamMap fire modeling capabilities. In P.L. Andrews & B.W. Butler (Eds.), Fuels management – how to measure success (pp. 213‒220). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
  16. Finney, M.A., Brittain, S., Seli, R.C., McHugh, C.W. & Gangi L. (2023). FlamMap:Fire Mapping and Analysis System (Version 6.2) (Software). https://www.firelab.org/project/flammap
  17. Ghefar, M. & Bouazzaoui A. (2021). La vulnérabilité de la forêt de Khodida (W. Sidi bel Abbes) face aux incendies. Ann. Rech. For.Algérie, 11(02), 62‒67.
  18. Ghefar, M., Morsli, B. & Ayoub B. (2024). Assessing the impact of anthropogenic activities on land use and land cover changes in the semi-arid and arid regions of Algeria. Environ. Monit. Assess., 196, 383. DOI: 10.1007/s10661-024-12524-2.
  19. Ghodrat, M., Edalati-Nejad, A. & Simeoni A. (2022). Collective effects of fire intensity and sloped terrain on Wind-Driven Surface fire and its impact on a cubic structure. Fire, 5(6), 208. DOI: 10.3390/fire5060208.
  20. González-Olabarria, J., Rodríguez, F., Fernández-Landa, A. & Mola-Yudego B. (2012). Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 282, 149–156. DOI: 10.1016/j.foreco.2012.06.056.
  21. Guo, H., Xiang, D., Zhang, P., Gao, Y., Zhang, Y. & Kong L. (2023). Effects of wind on heat transfer and spread of different fire lines across a pine needle fuel bed. Combustion Science and Technology, 197, 782‒802. DOI: 10.1080/00102202.2023.2273329.
  22. Hassan, A., Accary, G., Sutherland, D. & Moinuddin K. (2024). Physics-based modelling of wind-driven junction fires. Fire Safety Journal, 142, 104039. DOI: 10.1016/j.firesaf.2023.104039.
  23. Innocent, J., Sutherland, D. & Moinuddin K. (2023). Field-Scale Physical Modelling of Grassfire Propagation on Sloped Terrain under Low-Speed Driving Wind. Fire, 6(10), 406. DOI: 10.3390/fire6100406.
  24. Jimenez, F., Lorenzo, H., Novo, A., Acuña-Alonso, C. & Alvarez X. (2023). Modelling of live fuel moisture content in different vegetation scenarios during dry periods using meteorological data and spectral indices. Forest Ecology and Management, 546, 121378. DOI: 10.1016/j.foreco.2023.121378.
  25. Kalogiannidis, S., Chatzitheodoridis, F., Kalfas, D., Patitsa, C. & Papagrigoriou A. (2023). Socio-Psychological, economic and environmental effects of forest fires. Fire, 6(7), 280. DOI: 10.3390/fire6070280
  26. Khan, N., Sutherland, D. & Moinuddin K. (2023). Simulated behaviour of wildland fire spreading through idealised heterogeneous fuels. International Journal of Wildland Fire, 32(5), 738–748. DOI: 10.1071/wf22009.
  27. Lopez, A.M., Avila, C.C.E., VanderRoest, J.P., Roth, H.K., Fendorf, S. & Borch T. (2024). Molecular insights and impacts of wildfire-induced soil chemical changes. Nature Reviews Earth & Environment, 5(6), 431–446. DOI: 10.1038/s43017-024-00548-8.
  28. Loudermilk, E.L., O’Brien, J.J., Goodrick, S.L., Linn, R.R., Skowronski, N.S. & Hiers J.K. (2022). Vegetation’s influence on fire behavior goes beyond just being fuel. Fire Ecology, 18(9). DOI: 10.1186/s42408-022-00132-9.
  29. Mitchell, R.M. & Martin A.R. (2023). Fire, flammability and functional traits at the forefront of global change ecology. Functional Ecology, 37(11), 2767–2769. DOI: 10.1111/1365-2435.14432.
  30. Moreno, M., Bertolín, C., Arlanzón, D., Ortiz, P. & Ortiz R. (2023). Climate change, large fires, and cultural landscapes in the mediterranean basin: An analysis in southern Spain. Heliyon, 9(6), e16941. DOI: 10.1016/j.heliyon.2023.e16941.
  31. Nasa (2024). https://power.larc.nasa.gov/data-access-viewer/
  32. Nguyen, T.H., Jones, S., Reinke, K.J. & Soto-Berelov M. (2024). Estimating fine fuel loads in Eucalypt forests using forest inventory data and a modelling approach. Forest Ecology and Management, 561, DOI: 10.1016/j.foreco.2024.1218.
  33. Oseghae, I., Bhaganagar, K. & Mestas-Nuñez A.M. (2024). The Dolan Fire of Central Coastal California: Burn Severity Estimates from Remote Sensing and Associations with Environmental Factors. Remote Sensing, 16(10), 1693. DOI: 10.3390/rs16101693.
  34. Palaiologou, P., Kalabokidis, K., Ager, A. A. & Day M.A. (2020). Development of comprehensive fuel management strategies for reducing wildfire risk in Greece. Forests, 11(8), 789. DOI: 10.3390/f11080789.
  35. Pellizzaro, G., Duce, P., Ventura, A. & Zara P. (2007). Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin. International Journal of Wildland Fire, 16(5), 633‒641. DOI: 10.1071/WF05088.
  36. Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M., Bryant, C. & Konings A.G. (2023). Dry live fuels increase the likelihood of Lightning-Caused fires. Geophysical Research Letters, 50(15). DOI: 10.1029/2022GL100975.
  37. Rodrigues, A., Viegas, D.X., Almeida, M., Ribeiro, C., Raposo, J. & André J. (2023). Fire propagating laterally over a slope with and without an embedded canyon. Fire Safety Journal, 138, 103791. DOI: 10.1016/j.fire-saf.2023.103791.
  38. Salis, M., Ager, A.A., Alcasena, F.J., Arca, B., Finney, M.A., Pellizzaro, G. & Spano D. (2015). Analysing seasonal patterns of wildfire exposure factors in Sardinia. Italy Environ. Monit. Assess., 187(1), 1–20. DOI: 10.1007/s10661-014-4175-x.
  39. Salis, M., Arca, B., Bacciu, V., Duce, P. & Spano D. (2009). Assessment of fire severity in a Mediterranean area using FlamMap Simulator. VIII. Symposiumon on Fire and Forest Meteorology. https://dissem.in/p/37858079
  40. Santos, L.A.C., Brito, T.R.D.C. & De Melo E Silva-Neto C. (2022). Uso dos sistemas de informação geográficas (SIG) nas ciências ambientais: entre 2009 e 2019: uma análise cienciométrica. Revista Brasileira De Geografia Física, 15(4), 1715‒1731. DOI : 10.26848/rbgf.v15.4.p1715-1731.
  41. Scott, J.H. & Burgan R.E. (2005). Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
  42. Scott, J.H. & Reinhardt E.D. (2001). Assessing crown fire potential by linking models of surface and crown fire behaviour. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. DOI: 10.2737/rmrs-rp-29.
  43. Shan, Y., Gao, B., Yin, S., Shao, D., Cao, L., Yu, B., Cui, C. & Wang M. (2024). Influence of terrain slope on Sub-Surface fire behavior in bo-real forests of China. Fire, 7(2), 55. DOI: 10.3390/fire7020055.
  44. Sutherland, D., Rashid, M.A., Hilton, J.E. & Moinuddin K.A. (2023). Implementation of spatially-varying wind adjustment factor for wildfire simulations. Environmental Modelling & Software, 163, 105660. DOI: 10.1016/j.envsoft.2023.105660.
  45. Taneja, R., Wallace, L., Reinke, K., Hilton, J. & Jones S. (2023). Differences in Canopy Cover Estimations from ALS Data and Their Effect on Fire Prediction. Environmental Modeling & Assessment, 28(4), 565–583. DOI: 10.1007/s10666-023-09896-z.
  46. Yavuz, M., Sağlam, B., Küçük, Ö. & Tüfekçioğlu A. (2018). Assessing forest fire Behaviour simulation using FlamMap software and remote sensing techniques in Western Black Sea Region, Turkey. Kastamonu University Journal of Forestry Faculty, 18(2), 171‒188. DOI: 10.17475/kastorman.459698.
  47. Zagalikis, G. (2023). Remote sensing and GIS applications in wildfires. IntechOpen. DOI: 10.5772/intechopen.111616.
DOI: https://doi.org/10.2478/eko-2025-0010 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 81 - 90
Submitted on: Sep 15, 2024
|
Accepted on: Feb 17, 2025
|
Published on: Jun 19, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Mohammed Gheffar, Mammar Merghraoui, published by Slovak Academy of Sciences, Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.