References
- Ahirwar, R.M. (2023). Studies of some techniques for conservation of forest and wildlife. In Advances in environmental engineering and green technologies book series (pp. 185–191). DOI: 10.4018/978-1-6684-9034-1.ch006.
- AlcAsena, F., Salis, M., Ager, A.A., Castell, R. & Vega-García C. (2017). Assessing wildland fire risk transmission to communities in northern Spain. Forests, 8(2), 30. DOI: 10.3390/f8020030.
- Benabdeli K. (1996). Aspects physionomico-structuraux et dynamique des écosystèmes forestiers face à lapression anthropozoogène dans les monts de Tlemcen et les Monts de Dhaya (Algérie occidentale).Thèse de Doctorat, Faculté des Sciences, Université Djilali Liabès.
- Benzina, I., Bekdouche, F. & Bachir A.S. (2024). Post-fire dynamics of re-colonization by Cistus plants in the Aleppo pine and Cork oak forests in Bejaia region, central north Algeria. Environmental & Socio-Economic Studies, 12(2), 40–47. DOI: 10.2478/environ-2024-0011.
- Bitella, G., Bochicchio, R., Castronuovo, D., Lovelli, S., Mercurio, G., Rivelli, A. R., Rosati, L., D’Antonio, P., Casiero, P., Laghetti, G., Amato, M. & Rossi R. (2024). Monitoring Plant Height and Spatial Distribution of Biometrics with a Low-Cost Proximal Platform. Plants, 13(8), 1085. DOI: 10.3390/plants13081085.
- Bouiadjra, S.E., El Zerey, W. & Benabdeli K. (2011). Étude diachronique des changements du couvert végétal dans un écosystème montagneux par télédétection spatiale : cas des monts du Tessala (Algérie occidentale). Géographie Physique et Environnement, 5, 211‒225.
- Boving, I., Celebrezze, J., Salladay, R., Ramirez, A., Anderegg, L.D.L. & Moritz M. (2023). Live fuel moisture and water potential exhibit differing relationships with leaf-level flammability thresholds. Functional Ecology, 37(11), 2770–2785. DOI: 10.1111/1365-2435.14423.
- Brunner, I. & Godbold D.L. (2007). Tree roots in a changing world. Journal of Forest Research, 12(2), 78–82. DOI: 10.1007/s10310-006-0261-4.
- Burton, J.E., Penman, T.D., Filkov, A.I. & Cawson J.G. (2023). Multi-scale investigation of factors influencing moisture thresholds for litter bed flammability. Agricultural and Forest Meteorology, 337, 109514. DOI: 10.1016/j.agrformet.2023.109514.
- Calvo, R.C., Martínez, M.Á.V., Gómez, F.R., Salamanca, A.J.A. & Navarro-Cerrillo R.M. (2023). Improvements of fire fuels attributes maps by integrating field inventories, low density ALS, and satellite data in complex Mediterranean forests. Remote Sensing, 15(8), 2023. DOI: 10.3390/rs15082023.
- Cao, X. (2023). Impacts of wildfires and strategies to accelerate secondary succession: A comprehensive analysis. Theoretical and Natural Science, 8(1), 263–268. DOI: 10.54254/2753-8818/8/20240418.
- Chen, G., Qiu, M., Wang, P., Zhang, Y., Shindell, D. & Zhang H. (2024). Continuous wildfires threaten public and ecosystem health under climate change across continents. Frontiers of Environmental Science & Engineering, 18(10). DOI: 10.1007/s11783-024-1890-6.
- El Bouhissi, M., Bouidjra, S. & Benabdeli K. (2020). GIS, Forest Fire Prevention and Risk Matrix in the National Forest of Khoudida, Sidi Bel Abbes, Algeria. Open Journal of Ecology, 10(6), 356‒369. DOI: 10.4236/oje.2020.106022.
- El Zerey, W. (2014). Etude diachronique de la régression du couvert forestier de la plaine de Telagh (Algérie): approche par télédétection et SIG. Bulletin de l’Institut Scientifique Rabat, Section Sciences de la Vie, 36, 25‒31.
- Finney, M.A. (2006). An overview of FlamMap fire modeling capabilities. In P.L. Andrews & B.W. Butler (Eds.), Fuels management – how to measure success (pp. 213‒220). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
- Finney, M.A., Brittain, S., Seli, R.C., McHugh, C.W. & Gangi L. (2023). FlamMap:Fire Mapping and Analysis System (Version 6.2) (Software). https://www.firelab.org/project/flammap
- Ghefar, M. & Bouazzaoui A. (2021). La vulnérabilité de la forêt de Khodida (W. Sidi bel Abbes) face aux incendies. Ann. Rech. For.Algérie, 11(02), 62‒67.
- Ghefar, M., Morsli, B. & Ayoub B. (2024). Assessing the impact of anthropogenic activities on land use and land cover changes in the semi-arid and arid regions of Algeria. Environ. Monit. Assess., 196, 383. DOI: 10.1007/s10661-024-12524-2.
- Ghodrat, M., Edalati-Nejad, A. & Simeoni A. (2022). Collective effects of fire intensity and sloped terrain on Wind-Driven Surface fire and its impact on a cubic structure. Fire, 5(6), 208. DOI: 10.3390/fire5060208.
- González-Olabarria, J., Rodríguez, F., Fernández-Landa, A. & Mola-Yudego B. (2012). Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. Forest Ecology and Management, 282, 149–156. DOI: 10.1016/j.foreco.2012.06.056.
- Guo, H., Xiang, D., Zhang, P., Gao, Y., Zhang, Y. & Kong L. (2023). Effects of wind on heat transfer and spread of different fire lines across a pine needle fuel bed. Combustion Science and Technology, 197, 782‒802. DOI: 10.1080/00102202.2023.2273329.
- Hassan, A., Accary, G., Sutherland, D. & Moinuddin K. (2024). Physics-based modelling of wind-driven junction fires. Fire Safety Journal, 142, 104039. DOI: 10.1016/j.firesaf.2023.104039.
- Innocent, J., Sutherland, D. & Moinuddin K. (2023). Field-Scale Physical Modelling of Grassfire Propagation on Sloped Terrain under Low-Speed Driving Wind. Fire, 6(10), 406. DOI: 10.3390/fire6100406.
- Jimenez, F., Lorenzo, H., Novo, A., Acuña-Alonso, C. & Alvarez X. (2023). Modelling of live fuel moisture content in different vegetation scenarios during dry periods using meteorological data and spectral indices. Forest Ecology and Management, 546, 121378. DOI: 10.1016/j.foreco.2023.121378.
- Kalogiannidis, S., Chatzitheodoridis, F., Kalfas, D., Patitsa, C. & Papagrigoriou A. (2023). Socio-Psychological, economic and environmental effects of forest fires. Fire, 6(7), 280. DOI: 10.3390/fire6070280
- Khan, N., Sutherland, D. & Moinuddin K. (2023). Simulated behaviour of wildland fire spreading through idealised heterogeneous fuels. International Journal of Wildland Fire, 32(5), 738–748. DOI: 10.1071/wf22009.
- Lopez, A.M., Avila, C.C.E., VanderRoest, J.P., Roth, H.K., Fendorf, S. & Borch T. (2024). Molecular insights and impacts of wildfire-induced soil chemical changes. Nature Reviews Earth & Environment, 5(6), 431–446. DOI: 10.1038/s43017-024-00548-8.
- Loudermilk, E.L., O’Brien, J.J., Goodrick, S.L., Linn, R.R., Skowronski, N.S. & Hiers J.K. (2022). Vegetation’s influence on fire behavior goes beyond just being fuel. Fire Ecology, 18(9). DOI: 10.1186/s42408-022-00132-9.
- Mitchell, R.M. & Martin A.R. (2023). Fire, flammability and functional traits at the forefront of global change ecology. Functional Ecology, 37(11), 2767–2769. DOI: 10.1111/1365-2435.14432.
- Moreno, M., Bertolín, C., Arlanzón, D., Ortiz, P. & Ortiz R. (2023). Climate change, large fires, and cultural landscapes in the mediterranean basin: An analysis in southern Spain. Heliyon, 9(6), e16941. DOI: 10.1016/j.heliyon.2023.e16941.
- Nasa (2024). https://power.larc.nasa.gov/data-access-viewer/
- Nguyen, T.H., Jones, S., Reinke, K.J. & Soto-Berelov M. (2024). Estimating fine fuel loads in Eucalypt forests using forest inventory data and a modelling approach. Forest Ecology and Management, 561, DOI: 10.1016/j.foreco.2024.1218.
- Oseghae, I., Bhaganagar, K. & Mestas-Nuñez A.M. (2024). The Dolan Fire of Central Coastal California: Burn Severity Estimates from Remote Sensing and Associations with Environmental Factors. Remote Sensing, 16(10), 1693. DOI: 10.3390/rs16101693.
- Palaiologou, P., Kalabokidis, K., Ager, A. A. & Day M.A. (2020). Development of comprehensive fuel management strategies for reducing wildfire risk in Greece. Forests, 11(8), 789. DOI: 10.3390/f11080789.
- Pellizzaro, G., Duce, P., Ventura, A. & Zara P. (2007). Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin. International Journal of Wildland Fire, 16(5), 633‒641. DOI: 10.1071/WF05088.
- Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M., Bryant, C. & Konings A.G. (2023). Dry live fuels increase the likelihood of Lightning-Caused fires. Geophysical Research Letters, 50(15). DOI: 10.1029/2022GL100975.
- Rodrigues, A., Viegas, D.X., Almeida, M., Ribeiro, C., Raposo, J. & André J. (2023). Fire propagating laterally over a slope with and without an embedded canyon. Fire Safety Journal, 138, 103791. DOI: 10.1016/j.fire-saf.2023.103791.
- Salis, M., Ager, A.A., Alcasena, F.J., Arca, B., Finney, M.A., Pellizzaro, G. & Spano D. (2015). Analysing seasonal patterns of wildfire exposure factors in Sardinia. Italy Environ. Monit. Assess., 187(1), 1–20. DOI: 10.1007/s10661-014-4175-x.
- Salis, M., Arca, B., Bacciu, V., Duce, P. & Spano D. (2009). Assessment of fire severity in a Mediterranean area using FlamMap Simulator. VIII. Symposiumon on Fire and Forest Meteorology. https://dissem.in/p/37858079
- Santos, L.A.C., Brito, T.R.D.C. & De Melo E Silva-Neto C. (2022). Uso dos sistemas de informação geográficas (SIG) nas ciências ambientais: entre 2009 e 2019: uma análise cienciométrica. Revista Brasileira De Geografia Física, 15(4), 1715‒1731. DOI : 10.26848/rbgf.v15.4.p1715-1731.
- Scott, J.H. & Burgan R.E. (2005). Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
- Scott, J.H. & Reinhardt E.D. (2001). Assessing crown fire potential by linking models of surface and crown fire behaviour. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. DOI: 10.2737/rmrs-rp-29.
- Shan, Y., Gao, B., Yin, S., Shao, D., Cao, L., Yu, B., Cui, C. & Wang M. (2024). Influence of terrain slope on Sub-Surface fire behavior in bo-real forests of China. Fire, 7(2), 55. DOI: 10.3390/fire7020055.
- Sutherland, D., Rashid, M.A., Hilton, J.E. & Moinuddin K.A. (2023). Implementation of spatially-varying wind adjustment factor for wildfire simulations. Environmental Modelling & Software, 163, 105660. DOI: 10.1016/j.envsoft.2023.105660.
- Taneja, R., Wallace, L., Reinke, K., Hilton, J. & Jones S. (2023). Differences in Canopy Cover Estimations from ALS Data and Their Effect on Fire Prediction. Environmental Modeling & Assessment, 28(4), 565–583. DOI: 10.1007/s10666-023-09896-z.
- Yavuz, M., Sağlam, B., Küçük, Ö. & Tüfekçioğlu A. (2018). Assessing forest fire Behaviour simulation using FlamMap software and remote sensing techniques in Western Black Sea Region, Turkey. Kastamonu University Journal of Forestry Faculty, 18(2), 171‒188. DOI: 10.17475/kastorman.459698.
- Zagalikis, G. (2023). Remote sensing and GIS applications in wildfires. IntechOpen. DOI: 10.5772/intechopen.111616.