Have a personal or library account? Click to login
An Analytical Study on the Relationship of Land Surface Temperature with Normalized Difference Built-up Index, Urban Index, and Built-up Index Cover

An Analytical Study on the Relationship of Land Surface Temperature with Normalized Difference Built-up Index, Urban Index, and Built-up Index

Open Access
|Jun 2025

References

  1. Abir, F.A. & Saha R. (2021). Assessment of land surface temperature and land cover variability during winter: A spatio-temporal analysis of Pabna municipality in Bangladesh. Environmental Challenges, 4, 100167. DOI: 10.1016/j.envc.2021.100167.
  2. Arshad, A., Zhang, W., Zaman, M.A., Dilawar, A. & Sajid Z. (2019). Monitoring the impacts of spatio-temporal land-use changes on the regional climate of city Faisalabad, Pakistan. Annals of GIS, 25(1), 57–70. DOI: 10.1080/19475683.2018.1543205.
  3. Artis, D.A. & Carnahan W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ., 12, 313‒329. DOI: 10.1016/0034-4257(82)90043-8.
  4. Bonafoni, S. (2015). Spectral index utility for summer urban heating analysis. Journal of Applied Remote Sensing, 9, 096030. DOI: 10.1117/1.JRS.9.096030.
  5. Carlson, T.N. & Ripley D.A. (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ., 62, 241−252. DOI: 10.1016/S0034-4257(97)00104-1.
  6. Chen, S., Haase, D., Qureshi, S. & Firozjaei M.K. (2022). Integrated Land Use and Urban Function Impacts on Land Surface Temperature: Implications on Urban Heat Mitigation in Berlin with Eight-Type Spaces. Sustainable Cities and Society, 83, 103944. DOI: 10.1016/j.scs.2022.103944.
  7. Ezimand, K., Azadbakht, M. & Aghighi H. (2021). Analyzing the effects of 2D and 3D urban structures on LST changes using remotely sensed data. Sustainable Cities and Society, 74, 103216. DOI: 10.1016/j.scs.2021.103216.
  8. Fu, P. & Weng Q. (2016). A Time Series Analysis of Urbanization Induced Land Use and Land Cover Change and Its Impact on Land Surface Temperature With Landsat Imagery. Remote Sens. Environ., 175, 205–214. DOI: 10.1016/j.rse.2015.12.040.
  9. Ghaderizadeh, S., Abbasi-Moghadam, D., Sharifi, A., Tariq, A. & Qin S. (2022). Multiscale Dual-Branch Residual Spectral–Spatial Network With Attention for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5455‒5467. DOI: 10.1109/JSTARS.2022.3188732.
  10. Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M. & Grimm N. (2008). Global Change and the Ecology of Cities. Science, 319, 756–760. DOI: 10.1126/science.1150195.
  11. Guha, S. & Govil H. (2021). A long-term monthly analytical study on the relationship of LST with normalized difference spectral indices. European Journal of Remote Sensing, 54(1), 487−512. DOI: 10.1080/22797254.2021.1965496.
  12. Guha, S. & Govil H. (2022). Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019. Geocarto International, 37(15), 4292−4311. DOI: 10.1080/10106049.2021.1886339.
  13. Guha, S., Govil, H., Gill, N. & Dey A. (2021). A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data. Quaternary International, 575−576, 249−258. DOI: 10.1016/j.quaint.2020.06.041.
  14. Guha, S., Govil, H., Taloor, A.K., Gill, N. & Dey A. (2022). Land surface temperature and spectral indices: A seasonal study of Raipur City. Geodesy and Geodynamics, 13(1), 72−82. DOI: 10.1016/j.geog.2021.05.002.
  15. Hao, X., Li, W. & Deng H. (2016). The oasis effect and summer temperature rise in arid regions-case study in Tarim Basin. Scientific Reports, 6, 35418. DOI: 10.1038/srep35418.
  16. Hussain, S., Qin, S., Nasim, W., Bukhari, M.A., Mubeen, M., Fahad, S., Raza, A., Abdo, H.G., Tariq, A., Mousa, B.G., Mumtaz, F. & Aslam M. (2022). Monitoring the Dynamic Changes in Vegetation Cover Using Spatio-Temporal Remote Sensing Data from 1984 to 2020. Atmosphere, 13(10), 1609. DOI: 10.3390/atmos13101609.
  17. Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., Tariq, A. & Qin S. (2022). Modeling and Predicting Land Use Land Cover Spatiotemporal Changes: A Case Study in Chalus Watershed, Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5496−5513. DOI: 10.1109/JSTARS.2022.3189528.
  18. Kawamura, M., Jayamana, S. & Tsujiko Y. (1996). Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. International Archives of the Photo-grammetry and Remtesensing, 31, 321‒326.
  19. Lee, J., Lee, S.S. & Chi K.H. (2010). Development of an urban classification method using a built-up index. In Proc. 6th WSEAS Int. Conf. on Remote Sensing (pp. 39‒43). Iwate Prefectural University, Japan.
  20. Majeed, M., Tariq, A., Anwar, M.M., Khan, A.M., Arshad, F., Mumtaz, F., Farhan, M., Zhang, L., Zafar, A., Aziz, M., Abbasi, S., Rahman, G., Hussain, S., Waheed, M., Fatima, K. & Shaukat S. (2021). Monitoring of Land Use–Land Cover Change and Potential Causal Factors of Climate Change in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data. Land, 10(10), 1026. DOI: 10.3390/land10101026.
  21. Nichol, J.E. (2005). Remote Sensing of Urban Heat Islands by Day and Night. Photogrammetric Engineering and Remote Sensing, 19, 1639‒1649. DOI: 10.14358/PERS.71.5.613.
  22. Rikimaru, A., Roy, P.S. & Miyatake S. (2002). Tropical Forest cover density mapping. Tropical Ecology, 43, 39–47.
  23. Sekertekin, A. & Zadbagher E. (2021). Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecological Indicators, 122, 107230. DOI: 10.1016/j.ecolind.2020.107230.
  24. Sobrino, J.A., Jimenez-Munoz, J.C. & Paolini L. (2004). Land surface temperature retrieval from Landsat TM5. Remote Sens. Environ., 90(4), 434–440. DOI: 10.1016/j.rse.2004.02.003.
  25. Sobrino, J.A., Raissouni, N. & Li Z.L. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ., 75(2), 256–266. DOI: 10.1016/S0034-4257(00)00171-1.
  26. Tariq, A. & Mumtaz F. (2023). Modeling spatio-temporal assessment of land use land cover of Lahore and its impact on land surface temperature using multi-spectral remote sensing data. Environ. Sci. Pollut. Res., 30(9), 23908‒23924. DOI: 10.1007/s11356-022-23928-3.
  27. Tariq, A., Riaz, I., Ahmad, Z., Yang, B., Amin, M., Kausar, R., Andleeb, S., Farooqi, M.A. & Rafiq M. (2020). Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environmental Earth Science, 79, 40. DOI: 10.1007/s12665-019-8766-2.
  28. Tariq, A. & Shu H. (2020). CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Land Cover Change Using Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sensing, 12(20), 3402. DOI: 10.3390/rs12203402.
  29. Tariq, A., Yan, J., Gagnon, A.S., Khan, M.R. & Mumtaz F. (2023). Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spatial Information Science, 26(3), 302‒320. DOI: 10.1080/10095020.2022.2100287.
  30. Tariq, A., Yan, J. & Mumtaz F. (2022a). Land change modeler and CA-Markov chain analysis for land use land cover change using satellite data of Peshawar, Pakistan. Physics and Chemistry of the Earth, 128, 103286. DOI: 10.1016/j.pce.2022.103286.
  31. Tariq, A., Mumtaz, F., Zeng, X., Baloch, M.Y.J. & Moazzam M.F.U. (2022b). Spatio-temporal variation of seasonal heat islands mapping of Pakistan during 2000–2019, using day-time and night-time land surface temperatures MODIS and meteorological stations data. Remote Sensing Applications: Society and Environment, 27, 100779. DOI: 10.1016/j.rsase.2022.100779.
  32. Tomlinson, C.J., Chapman, L., Trones, J.E. & Baker C. (2011). Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Applications, 18, 296–306. DOI: 10.1002/met.287.
  33. Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M. & Kieu H.V. (2017). Characterizing the Relationship Between Land Use Land Cover Change and Land Surface Temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132. DOI: 10.1016/j.isprsjprs.2017.01.001.
  34. Weng, Q. (2009) Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 335–344. DOI: 10.1016/j.isprsjprs.2009.03.007.
  35. Weng, Q.H., Lu, D.S. & Schubring J. (2004). Estimation of Land Surface Temperature–Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ., 89, 467−483. DOI: 10.1016/j.rse.2003.11.005.
  36. Zha, Y., Gao, J. & Ni S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens., 24, 583–594. DOI: 10.1080/01431160304987.
  37. Zhang, Y., Odeh, I.O.A. & Han C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), 256‒264. DOI: 10.1016/j.jag.2009.03.001.
  38. Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z. & Sobrino J.A. (2019). Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sensing, 11, 48. DOI: 10.3390/rs11010048.
DOI: https://doi.org/10.2478/eko-2025-0009 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 69 - 80
Submitted on: Sep 6, 2024
|
Accepted on: Apr 4, 2025
|
Published on: Jun 19, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Subhanil Guha, Himanshu Govil, Neelay Srivastava, published by Slovak Academy of Sciences, Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.