Have a personal or library account? Click to login
Geographic Information Systems for Water Quality Modeling in the Zhytomyr District Communities Cover

Geographic Information Systems for Water Quality Modeling in the Zhytomyr District Communities

Open Access
|Jun 2024

References

  1. Abbasnia, A., Radfard, M., Mahvi, A.H., Nabizadeh, R., Yousefi, M., Soleimani, H. &amp; Alimohammadi M. (2018). Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. <em>Data in Brief</em>, 19, 623–631. DOI: <a href="https://doi.org/10.1016/j.dib.2018.05.061." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.dib.2018.05.061.</a>
  2. Aghapour, S., Bina, B., Tarrahi, M.J., Amiri, F. &amp; Ebrahimi A. (2021). Comparative health risk assessment of nitrate in drinking groundwater resources of urban and rural regions (Isfahan, Iran), using GIS. <em>Environ. Monit. Assess</em>., 193(12), 794. DOI: <a href="https://doi.org/10.1007/s10661-021-09575-0." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10661-021-09575-0.</a>
  3. Armanuos, A.M. &amp; Negm A.M. (2016) GIS-based spatial distribution of groundwater quality in the Western Nile Delta, Egypt. In A. Negm (Ed.), <em>The Nile Delta</em> (pp. 89–119). Springer. DOI: <a href="https://doi.org/10.1007/698_2016_66." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/698_2016_66.</a>
  4. Bao-wen, Y. &amp; Yang L. (2011). GIS-based study on spatial variability of groundwater quality in Xianyang City. In <em>International Symposium on Water Resource and Environmental Protection</em> (pp. 48‒52). China: IEEE. DOI: <a href="https://doi.org/10.1109/ISWREP.2011.5892942." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ISWREP.2011.5892942.</a>
  5. Batarseh, M., Imreizeeq, E., Tilev, S., Al Alaween, M., Suleiman, W., Al Remeithi, A.M., Al Tamimi, M.K. &amp; Al Alawneh M. (2021). Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. <em>Groundwater for Sustainable Development</em>, 14, 100611. DOI: <a href="https://doi.org/10.1016/j.gsd.2021.100611." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.gsd.2021.100611.</a>
  6. Bera, A., Mukhopadhyay, B.P., Chowdhury, P., Ghosh, A. &amp; Biswas S. (2021). Groundwater vulnerability assessment using GIS-based DRASTIC model in Nangasai River Basin, India with special emphasis on agricultural contamination. <em>Ecotoxico. Environ.Saf.</em>, 214, 112085. DOI: <a href="https://doi.org/10.1016/j.ecoenv.2021.112085." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ecoenv.2021.112085.</a>
  7. Bian, J., Liu, C., Zhang, Z., Wang, R. &amp; Gao Y. (2016) Hydro-geochemical characteristics and health risk evaluation of nitrate in groundwater. <em>Pol. J. Environ. Stud.,</em> 25(2), 521‒527. DOI: <a href="https://doi.org/10.15244/pjoes/61113." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15244/pjoes/61113.</a>
  8. Chica-Olmo, M., Peluso, F., Luque-Espinar, J.A., Rodriguez-Galiano, V., Pardo-Igúzquiza, E. &amp; Chica-Rivas L. (2017). A methodology for assessing public health risk associated with groundwater nitrate contamination: A case study in an agricultural setting (southern Spain). <em>Environ. Geochem. Health,</em> 39, 1117–1132. DOI: <a href="https://doi.org/10.1007/s10653-016-9880-7." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10653-016-9880-7.</a>
  9. Choudhury, N., Siddiqua, T.J., Ahmed, SMT., Haque, M.A., Ali, M., Dil, Farzana, F., Naz, F., Rahman, S.S., Faruque, A.S.G., Rahman, S. &amp; Ahmed T. (2022). Iron content of drinking water is associated with anaemia status among children in high groundwater iron areas in Bangladesh. <em>Trop. Med. Int. Health</em>, 27(2), 149‒157. DOI: <a href="https://doi.org/10.1111/tmi.13710." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/tmi.13710.</a>
  10. Daud, M., Nafees, M., Ali, S., Rizwan, M., Bajwa, R., Shakoor, M., Arshad, M., Chatha, S., Deeba, F., Murad, W., Malook, I. &amp; Zhu S. (2017). Drinking Water Quality Status and Contamination in Pakistan. <em>BioMed Research International</em>, 2017, 7908183. DOI: <a href="https://doi.org/10.1155/2017/7908183." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1155/2017/7908183.</a>
  11. Dirisu, C., Mafiana, M., Dirisu, G. &amp; Amodu R. (2016). Level of pH in drinking water of an oil and gas producing community and perceived biological and health implications. <em>European Journal of Basic and Applied Sciences</em>, 3, 53‒60.
  12. Ferrer, J., Pérez-Martín, M.A., Jiménez, S., Estrela, T. &amp; Andreu J. (2012). GIS-based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects. <em>Sci. Total Environ.</em>, 440, 42–59. DOI: <a href="https://doi.org/10.1016/j.scitotenv.2012.08.032." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.scitotenv.2012.08.032.</a>
  13. Gan, L., Huang, G., Pei, L., Gan, Y., Liu, C., Yang, M., Han, D. &amp; Song J. (2021). Distributions, origins, and health-risk assessment of nitrate in groundwater in typical alluvial-pluvial fans, North China Plain. <em>Environ. Sci. Pollut. Res. Int.</em>, 29, 1‒18. DOI: <a href="https://doi.org/10.1007/s11356-021-17067-4." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s11356-021-17067-4.</a>
  14. Ghosh, G.C., Khan, M.J.H., Chakraborty, T.K., Zaman, S., Enamul Kabir A.H.M. &amp; Tanaka H. (2020). Human health risk assessment of elevated and variable iron and manganese intake with arsenic-safe groundwater in Jashore, Bangladesh. <em>Sci. Rep.</em>, 10, 5206. DOI: <a href="https://doi.org/10.1038/s41598-020-62187-5." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1038/s41598-020-62187-5.</a>
  15. Gibson, J. &amp; Kelsey P. (2017). Strategies to improve private-well water quality: a North Carolina perspective. <em>Environ. Health Perspect.</em>, 125(7), 076001. DOI: <a href="https://doi.org/10.1289/EHP890." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1289/EHP890.</a>
  16. Herasymchuk, L., Romanchuk, L. &amp; Valerko R. (2022). Water quality from the sources of non-centralized water supply within the rural settlements of Zhytomyr region. <em>Ekológia (Bratislava)</em>, 41(2), 126–134. DOI: <a href="https://doi.org/10.2478/eko-2022-0013." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/eko-2022-0013.</a>
  17. Karunanidhi, D., Aravinthasamy, P., Subramani, T. &amp; Manish Kumar (2021). Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: A case study from Texvalley (Tiruppur region) of India. <em>Chemosphere</em>, 265, 129083. DOI: <a href="https://doi.org/10.1016/j.chemosphere.2020.129083." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.chemosphere.2020.129083.</a>
  18. Kell, D.B. (2010). Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. <em>Arch. Toxicol.</em>, 84, 825–889. DOI: <a href="https://doi.org/10.1007/s00204-010-0577-x." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00204-010-0577-x.</a>
  19. Khatri, N. &amp; Tyagi S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. <em>Frontiers in Life Science</em>, 8(1), 23‒39. DOI: <a href="https://doi.org/10.1080/21553769.2014.933716." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/21553769.2014.933716.</a>
  20. Mena-Rivera, L. &amp; Quiros-Vega J. (2018). Assessment of drinking water suitability in low income rural areas: a case study in Sixaola, Costa Rica. <em>Journal of Water and Health</em>, 16(3), 403–413. DOI: <a href="https://doi.org/10.2166/wh.2018.203." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2166/wh.2018.203.</a>
  21. Moldovan, A., Hoaghia, M.A., Kovacs, E., Mirea, I.C., Kenesz, M., Arghir, R.A., Petculescu, A., Levei, E.A. &amp; Moldovan O.T. (2020). Quality and Health Risk Assessment Associated with Water Consumption – A Case Study on Karstic Springs. <em>Water</em>, 12, 3510. DOI: <a href="https://doi.org/10.3390/w12123510." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/w12123510.</a>
  22. Munene, A., Lockyer, J., Checkley, S. &amp; Hall D.C. (2019). Perceptions of drinking water quality from private wells in Alberta: A qualitative study. <em>Canadian Water Resources Journal,</em> 44(3), 291–306. DOI: <a href="https://doi.org/10.1080/07011784.2019.1601599." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/07011784.2019.1601599.</a>
  23. Njeze, G.E., Dilibe, U. &amp; Ilo C. (2014). Nitrate and drinking water from private wells: Will there be an epidemic of cancers of the digestive tract, urinary bladder and thyroid? <em>Nigerian Journal of Clinical Practice</em>, 17(2), 178‒182. DOI: <a href="https://doi.org/10.4103/1119-3077.127543." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4103/1119-3077.127543.</a>
  24. Nyambura, C., Hasim, N.O., Chege, M.W., Tokonami, S. &amp; Omonya F.W. (2020). Cancer and non-cancer health risks from carcinogenic heavy metal exposures in underground water from Kilimambogo, Kenya. <em>Groundwater for Sustainability Development</em>, 10, 100315.
  25. Official website of the Ministry for Communities and Territories Development of Ukraine. National report on the quality of drinking water and the state of drinking water supply in Ukraine in 2019 (2020). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.minregion.gov.ua/wp-content/uploads/2020/12/naczionalna-dop-ovid-za-2019-rik.pdf">https://www.minregion.gov.ua/wp-content/uploads/2020/12/naczionalna-dop-ovid-za-2019-rik.pdf</ext-link>.
  26. Paul, R., Brindha, K., Gowrisankar, G., Tan, M.L. &amp; Singh M.K. (2019). Identification of hydrogeochemical processes controlling groundwater quality in Tripura, Northeast India using evaluation indices, GIS, and multivariate statistical methods. <em>Environ. Earth Sci.</em>, 78, 470. DOI: <a href="https://doi.org/10.1007/s12665-019-8479-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12665-019-8479-6.</a>
  27. Planning and development of territories: DBN (State building regulations) B.2.2-12: 2019 (2019). Kyiv. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://dreamdim.ua/wp-content/uploads/2019/07/DBN-B22-12-2019.pdf">https://dreamdim.ua/wp-content/uploads/2019/07/DBN-B22-12-2019.pdf</ext-link>.
  28. Qasemi, M., Farhang, M., Biglari, H., afsharnia, M., Ojrati, A., Khani, F., Samiee, M. &amp; Zarei A. 2018). Health risk assessments due to nitrate levels in drinking water in villages of Azadshahr, northeastern Iran. <em>Environ. Earth Sci.</em>, 77, 782. DOI: <a href="https://doi.org/10.1007/s12665-018-7973-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s12665-018-7973-6.</a>
  29. Rawat, K.S. &amp; Singh S.K. (2018). Water Quality Indices and GIS-based evaluation of a decadal groundwater quality. <em>Geology, Ecology, and Landscapes</em>, 2(4), 240–255. DOI: <a href="https://doi.org/10.1080/24749508.2018.1452462." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/24749508.2018.1452462.</a>
  30. Richards, J., Chambers, T., Hales, S., Joy, M., Radu, T., Woodward, A., Humphrey, A., Randal, E., &amp; Baker M.G. (2022). Nitrate contamination in drinking water and colorectal cancer: Exposure assessment and estimated health burden in New Zealand. <em>Environ. Res.</em>, 204, 112322. DOI: <a href="https://doi.org/10.1016/j.envres.2021." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.envres.2021.</a>
  31. Romanchuk, L.D., Valerko, R.A., Herasymchuk, L.O. &amp; Kravchuk M.M. (2021). Assessment of the impact of organic agriculture on nitrate content in drinking water in rural settlements of Ukraine. <em>Ukrainian Journal of Ecology</em>, 11(2), 17‒26. DOI: <a href="https://doi.org/10.15421/2021_71." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15421/2021_71.</a>
  32. Saalidong, B.M., Aram, S.A., Out, S. &amp; Lartey P.O. (2022). Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. <em>PLoS ONE</em>, 17(1), e0262117. DOI: <a href="https://doi.org/10.1371/journal.pone.0262117." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1371/journal.pone.0262117.</a>
  33. Sasakova, N., Gregova, G., Takacova, D., Mojzisova, J., Papajova, I., Venglovsky, J., Szaboova, T. &amp; Kovacova S. (2018). Pollution of surface and ground water by sources related to agricultural activities. <em>Frontiers in Sustainable Food Systems</em>, 2, 42. DOI: <a href="https://doi.org/10.3389/fsufs.2018.00042." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3389/fsufs.2018.00042.</a>
  34. Schaider, L., Swetschinski, L., Campbell, C. &amp; Rudel R. (2019). Environmental justice and drinking water quality: Are there socioeconomic disparities in nitrate levels in U.S. drinking water? <em>Environ. Health</em>, 18, 3. DOI: <a href="https://doi.org/10.1186/s12940-018-0442-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12940-018-0442-6.</a>
  35. Schullehner, J., Hansen, B., Thygesen, M., Pedersen, C.B. &amp; Sigsgaard T. (2018). Nitrate in drinking water and colorectal cancer risk: a nationwide population‐based cohort study. <em>Int. J. Cancer</em>, 143(1), 73‒79. DOI: <a href="https://doi.org/10.1002/ijc.31306." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/ijc.31306.</a>
  36. Sources of centralized drinking water supply. Hygienic and environmental requirements for water quality and selection rules: DSTU (National Standards of Ukraine) 4808:2007 (2007). Kyiv.
  37. UNDP Ukraine: Goal 6. Clean water and sanitation. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.undp.org/ukraine/sustainable-development-goals#clean-water-and-sanitation">https://www.undp.org/ukraine/sustainable-development-goals#clean-water-and-sanitation</ext-link>.
  38. Valerko, R.A. &amp; Herasymchuk L.O. (2021). Ecological assessment of the state of drinking water within the bounds of the united territorial communities of the expanded Zhytomyr district. <em>Man and Environment. Issues of Neoecology</em>, 35, 37‒47. DOI: <a href="https://doi.org/10.26565/1992-4224-2021-35-04." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.26565/1992-4224-2021-35-04.</a>
  39. Valerko, R.A., Herasymchuk, L.O., Martenyuk, G.M. &amp; Kravchuk M.M. (2018). Ecological assessment of vegetable products grown in the city of Zhytomyr and its residential suburb. <em>Ukrainian Journal of Ecology</em>, 8(1), 927–938. DOI: <a href="https://doi.org/10.15421/2018_295." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15421/2018_295.</a>
  40. Valerko, R., Herasymchuk, L., Pitsil, A. &amp; Palkevich J. (2022). GIS-based assessment of risk for drinking water contamination to children’s health in rural settlements. <em>Ekológia (Bratislava)</em>, 41(4), 312–321. DOI: <a href="https://doi.org/10.2478/eko-2022-0032." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/eko-2022-0032.</a>
  41. Verkhovna Rada of Ukraine (2010). On approval of the State Sanitary Rules and Regulations “Hygienic Requirements to Drinking Water Intended for Human Consumption” (DSanPiN 2.2.4-171-10). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://zakon.rada.gov.ua/laws/show/z0452-10">https://zakon.rada.gov.ua/laws/show/z0452-10</ext-link>.
  42. Wang, J. &amp; Yang Y. (2008). An approach to catchment-scale groundwater nitrate risk assessment from diffuse agricultural sources: A case study in the Upper Bann, Northern Ireland. <em>Hydrological Processes</em>, 22, 4274–4286. DOI: <a href="https://doi.org/10.1002/hyp.7036." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1002/hyp.7036.</a>
  43. Wheeler, D.C., Nolan, B.T., Flory, A.R., DellaValle, C.T. &amp; Ward M.H. (2015). Modeling groundwater nitrate concentrations in private wells in Iowa. <em>Sci. Total Environ.,</em> 536, 481–488. DOI: <a href="https://doi.org/10.1016/j.scitotenv.2015.07.080." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.scitotenv.2015.07.080.</a>
  44. WHO: Diseases and risks. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.who.int/water_sanitation_health/diseases-risks/en">https://www.who.int/water_sanitation_health/diseases-risks/en</ext-link>.
  45. Yu, G., Wang, J., Liu, L., Li, Y., Zhang, Y. &amp; Wang S. (2020). The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai, China. <em>BMC Public Health</em>, 20, 437. DOI: <a href="https://doi.org/10.1186/s12889-020-08583-y." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/s12889-020-08583-y.</a>
DOI: https://doi.org/10.2478/eko-2024-0010 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 99 - 111
Submitted on: May 3, 2023
Accepted on: Aug 5, 2023
Published on: Jun 4, 2024
Published by: Slovak Academy of Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Ruslana Valerko, Liudmyla Herasymchuk, Oleksandr Kratiuk, published by Slovak Academy of Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.