Have a personal or library account? Click to login
Assessment of Parectopa robiniella Clemens (Lepidoptera: Gracillariidae) Effect on Biochemical Parameters of Robinia pseudoacacia Under Conditions of an Industrial City in Steppe Ukraine Cover

Assessment of Parectopa robiniella Clemens (Lepidoptera: Gracillariidae) Effect on Biochemical Parameters of Robinia pseudoacacia Under Conditions of an Industrial City in Steppe Ukraine

Open Access
|Dec 2022

References

  1. Acevedo, F.E., Rivera-Vega, L.J., Chung, S.H., Ray, S. & Felton G.W. (2015). Cues from chewing insects – the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr. Opin. Plant Biol., 26, 80–86. DOI: 10.1016/j.pbi.2015.05.029.26123394
  2. Bilgin, D.D., Zavala, J.A., Zhu, J., Clough, S.J., Ort, D.R. & DeLucia E.H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ., 33(1), 597–613. DOI: 10.1111/j.1365-3040.2010.02167.x.20444224
  3. Bond, B.J., Czarnomski, N.M., Cooper, C., Day, M.E. & Michael S.G. (2007). Development decline in height growth in Douglas-fir. Tree Physiol., 27, 441–453. DOI: 10.1093/treephys/27.3.441.17241986
  4. Bradford, M.M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72, 248–254. DOI: 10.1006/abio.1976.9999942051
  5. Canbolat, Ö. (2012). Determination of potential nutritive value of exotic tree leaves in Turkey. Kafkas Üniversitesi Veteriner Fakütesi Dergisi, 18(3), 419–423. DOI:10.9775/kvfd.2011.5584.
  6. Cierjacks, A., Kowarik, I., Joshi, J., Hempel, S., Ristow, M., Lippe, M. & Weber E. (2013). Biological flora of the British Isles: Robinia pseudoacacia. J. Ecol., 101, 1623–1640. DOI: 10.1111/1365-2745.12162.
  7. Csóka, G., Stone, G.N. & Melika G. (2017). Non-native gall-inducing insects on forest trees: a global review. Biol. Invasions, 19, 3161–3181. DOI:10.1007/s10530-017-1466-5.
  8. Davis, D.R. & De Prins J. (2011). Systematics and biology of the new genus Macrosaccus with descriptions of two new species (Lepidoptera, Gracillariidae). ZooKeys. 98, 29–82. DOI:10.3897/zookeys.98.925.309513221594070
  9. Duan, L., Liu, H., Li, X., Xiao, J. & Wang S. (2014). Multiple phytohormones and phytoalexins are involved in disease resistance to Magna-porthe oryzae invaded from roots in rice. Physiol. Plant., 152, 486–500. DOI: 10.1111/ppl.12192.24684436
  10. Duan, Y.-Y., Song, L.-J., Niu, S.-Q., Huang, T., Yang, G.-H. & Hao W.-F. (2017). Variation in leaf functional traits of different-aged Robinia pseudoacacia communities and relationships with soil nutrients. Chinese Journal of Applied Ecology, 28(1), 28–36. DOI:10.13287/j.1001-9332.201701.036.29749185
  11. Emebiri, L.C., Tan, M.K., El-Bouhssini, M., Wildman, O., Jighly, A., Tadesse, W. & Ogbonnaya F.C. (2016). QTL mapping identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage. Theor. Appl. Genet., 130, 309–318. DOI:10.1007/s00122-016-2812-1.27744491
  12. Enescu, C.M. & Dãnescu A. (2013). Black locust (Robinia pseudoacacia L.) – an invasive neophyte in the conventional land reclamation flora in Romania. Bulletin of the Transilvania University of Braşov, 6(55), 23–30.
  13. Gill, R.S., Gupta, A.K., Taggar, G.K. & Taggar M.S. (2010). Role of oxidative enzymes in plant defenses against insect herbivory. Acta Phytopathol. Entomol. Hung., 45, 277–90. DOI:10.1556/APhyt.45.2010.2.4.
  14. Guo, X., Ren, X., Eller, F., Li, M-Y, Wang, R-Q, Du, N., & Guo W-H. (2018). Higher phenotypic plasticity does not confer higher salt resistance to Robinia pseudoacacia than Amorpha fruticosa. Acta Physiol. Plant., 4, 40–79. DOI:10.1007/s11738-018-2654-3.
  15. Heng-Moss, T.M., Sarath, G., Baxendale, F.P., Novak, D., Bose, S., Ni, X. & Quisenberry S. (2004). Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus. J. Econ. Entomol., 97(3), 1086–1095. DOI:10.1093/jee/97.3.1086.15279295
  16. Holec, J., Krmelova, K. & Soukup J. (2009). Intensity of occurrence of locust gall midge (Obolodiplosis robiniae), leaf miner moth (Phyllonorycter robiniella) and locust digitate miner (Parectopa robiniella) on invasive black locust tree (Robinia pseudoacacia). Česká a slovenská konference o ochrane rostlin. Brno: MZLU.
  17. Holoborodko, K.K., Rusynov, V.I., Loza, I.M. & Pakhomov O.Ye. (2021). Adaptive features of the Phyllonorcyter robiniella (Clemens, 1859) (Gracillariidae Stainton, 1854) population in urban ecosystems. Ukrainian Journal of Ecology, 11(2), 27–34. DOI:10.15421/2021_72.
  18. Holoborodko, K.K., Rusynov, V.I. & Seliutina, O.V. (2018). Addition to analysis of morphological parameters of mines on two invasive leaf-mining Lepidoptera species ((Parectopa robiniella (Clemens, 1863) and Phyllonorycter robiniella (Clemens, 1859)) on black locust. Problems of Bioindications and Ecology, 23(2), 134–141. DOI:10.26661/2312-2056/2018-23/2-09.
  19. Holoborodko, K., Seliutina, O., Alexeyeva, A., Brygadyrenko, V., Ivanko, I., Shulman, M., Pakhomov, O., Loza, I., Sytnyk, S., Lovynska, V., Grytsan, Y. & Bandura L. (2022). The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment. International Journal of Plant Biology, 13, 223–234. DOI:10.3390/ijpb13030019.
  20. Khromykh, N.O., Lykholat, Y.V., Shupranova, L.V., Kabar, A.M., Didur, O.O. & Kulbachko U.L. (2018). Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosystems Diversity, 26(2), 132–138. DOI:10.1542/011821.
  21. Kirichenko, N., Augustin, S. & Kenis M. (2019). Invasive leafminers on woody plants: a global review of pathways, impact, and management. J. Pestic. Sci., 92, 93–106. DOI:10.1007/s10340-018-1009-6.
  22. Konaikova, V.O. & Vakarenko O.V. (2020). The Alien Fraction of the Woody Flora of Yelanetskyi Step Nature Reserve, Southern Ukraine. Ekológia (Bratislava), 39(4), 322–332. DOI: 10.2478/eko-2020-0026.
  23. Korshykov, I.I., Boyko, L.I., Krasnoshtan, O.V., Suslova, O.P. & Mazur A.Yu. (2018). Diversity and viability of tree species of street plantations in Kryvyi Rih (in Ukrainian). ScienceRise: Biological Science, 13(3), 534–542. DOI:10.15587/2519-8025.2018.133186.
  24. Le Gall, M. & Behmer S.T. (2014). Effects of Protein and Carbohydrate on an Insect Herbivore: The Vista from a Fitness Landscape. Integrative and Comparative Biology, 54(5), 942–954. DOI:10.1093/icb/icu102.25070074
  25. Liu, Z., Mo, K., Fei, S., Zu, Y. & Yang L. (2017). Efficient approach for the extraction of proanthocyanidins from Cinnamomum longepaniculatum leaves using ultrasonic irradiation and an evaluation of their inhibition activity on digestive enzymes and antioxidant activity in vitro. J. Sep. Sci., 40(15), 3100–3113. DOI:10.1002/jssc.201700342.28590026
  26. Lukovičová, M., Balanac, Z. & David S. (2021). Changes in habitat conditions of invaded forest communities in Podunajská Nížina and the impact of non-native species on biodiversity (SW Slovakia). Ekológia (Bratislava), 40(4), 364–378. DOI: 10.2478/eko-2021-0038.
  27. Mattson, W.J. (1980). Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst., 11, 119–161.DOI: 10.1146/annurev.es.11.110180.001003.
  28. McHale, L., Tan, X., Koehl, P. & Michelmore R.W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome Biology, 7(4), 212. DOI:10.1186/gb-2006-7-4-212.155799216677430
  29. Meinzer, F.C., Lachenbruch, B. & Dawson T.E. (2011). Size- and age-related changes in tree structure and function. Berlin, Heidelberg: Springer.10.1007/978-94-007-1242-3
  30. Meriño-Cabrera, Y., Zanuncio, J.C., da Silva, R.S., Solis-Vargas, M., Cord-eiro, G., Rainha, F.R., Campos, W.G., Picanço, M.C. & de Almeida Oliveira M.G. (2018). Biochemical response between insects and plants: an investigation of enzyme activity in the digestive system of Leucoptera coffeella (Lepidoptera: Lyonetiidae) and leaves of Coffea arabica (Rubiaceae) after herbivory. Ann. Appl. Biol., 172(2), 236–243. DOI:10.1111/aab.12416.
  31. Montecchiari, S., Tesei, G., & Allegrezza M. (2020). Effects of Robinia pseudoacacia coverage on diversity and environmental conditions of central-northern Italian Quercus pubescents sub-Mediterranean forests (HABITAT CODE 91AA*). Threshold Assessment, 10, 33–54. DOI: 10.13133/2239-3129/16447.
  32. Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. & Vila M. (2018). More than ‘‘100 worst’’ alien species in Europe. Biol. Invasions, 20, 1611–1621 DOI: 10.1007/s10530-017-1651-6.
  33. Nicolescu, V., Rédei, K. & Mason W.L. (2020). Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. Journal of Forest Resources, 31(4), 1081–1101. DOI: 10.1007/s11676-020-01116-8).
  34. Paterska, M., Bandurska, H., Wysłouch, J., Molińska-Glura, M. & Moliński K. (2017). Chemical composition of horse-chestnut (Aesculus) leaves and their susceptibility to chestnut leaf miner Cameraria ohridella Deschka & Dimić. Acta Physiol. Plant., 105 (39), 1–16. DOI:10.1007/S11738-017-2404-Y.
  35. Polle, A. & Rennenberg H. (2019). Physiological responses to abiotic and biotic stress in forest trees. Forests, 10(9), 711. DOI: 10.3390/f10090711.
  36. Puchałka, R., Dyderski, M. K, Vítková. M., Sádlo, J., Klisz, M., Netsvetov, M., Prokopuk, Yu., Matisons, R., Mionskowski, M., Wojda, T., Koprowski, M. & Jagodziński A.M. (2021). Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Global Change Biology, 27(8), 1587–1600. DOI: 10.1111/gcb.15486.33336522
  37. Rangasamy, M., Rathinasabapathi, B., Mcauslane, H.J., Cherry, R.H. & Nagata R.T. (2009). Role of leaf sheath lignification and anatomy in resistance against southern chinch bug (Hemiptera: Blissidae) in St. Augustine-grass. J. Econ. Entomol., 102(1), 432–439. DOI: 10.1603/029.102.0156.19253665
  38. Rаnieri, А., Cаstаgnа, А., Bаldаm, В. & Soldаtini G.F. (2001). Iron deficiency differently аffects peroxidаse isoforms in sunflower. J. Exp. Bot., 52(354), 25–35.10.1093/jexbot/52.354.25
  39. Rumlerová, Z., Vilà, M., Pergl, J., Nentwig, W. & Pyšek P. (2016). Scoring environmental and socioeconomic impacts of alien plants invasive in Europe. Biol. Invasion, 18(12), 3697–3711. DOI: 10.1007/s10530-016-1259-2.
  40. Seliutina, O.V., Shupranova, L.V., Holoborodko, K.K., Shulman, M.V. & Bobylev Y.P. (2020). Effect of Cameraria ohridella on accumulation of proteins, peroxidase activity and composition in Aesculus hippocastanum leaves. Regulatory Mechanisms in Biosystems, 11(2), 299–304. DOI: 10.15421/022045.
  41. Shvydenko, I.M., Stankevych, S.V., Goroshko, V.V., Bulat, A.G., Cherkis, T.M., Zabrodina, I.V., Lezhenina, I.P. & Baidyk H.V. (2021). Adventitious leaf miner Parectopa robiniella Clemens, 1863 and Phyllonorycter robiniella Clemens, 1859 on a black locust tree in the Kharkiv region. Ukrainian Journal of Ecology, 11(7), 22–32. DOI: 10.15421/2021_238.
  42. Singh, H., Dixit, S., Verma, P.C. & Singh P.K. (2013). Differential peroxidase activities in three different crops upon insect feeding. Plant Signal and Behaviour, 8(10), 1–7. DOI: 10.4161/psb.25615.400259423857346
  43. Shupranova, L.V., Holoborodko, K.K., Seliutina, O.V. & Pakhomov O.Y. (2019). The influence of Cameraria ohridella (Lepidoptera, Gracillariidae) on the activity of the enzymatic antioxidant system of protection of the assimilating organs of Aesculus hippocastanum in an urbogenic environment. Biosystems Diversity, 27(3), 238–243. DOI:10.15421/011933.
  44. Sytnyk, S., Lovynska, V. & Lakyda I. (2017). Foliage biomass qualitative indices of selected forest forming tree species in Ukrainian Steppe. Folia Oecologica, 44 (1), 38–45. DOI:10.1515/foecol-2017-0005.
  45. Taggar, G.K., Gill, R.S., Gupta, A.K. & Sandhu J.S. (2012). Fluctuations in peroxidase and catalase activities of resistant and susceptible black gram (Vigna mungo (L.) Hepper) genotypes elicited by Bemisia tabaci (Gennadius) feeding. Plant Signaling & Behavior, 7(10), 1321–1329. DOI: 10.4161/psb.21435.349342022902801
  46. Takashima, Y., Suzuki, M., Ishiguri, F., Iizuka, K., Yoshizawa, N. & Yokota S. (2013). Cationic peroxidase related to basal resistance of Betula platyphylla var. japonica plantlet No. 8 against canker-rot fungus Inonotus obliquus strain IO-U1. Plant Biotechnology, 30(2), 199–205. DOI: 10.5511/plantbiotechnology.13.0312b.
  47. Toledo, C.A.L., Ponce, F.S., Oliveira, M.D., Aires, E.S., Júnior, S.S., Lima, G.P.P. & Oliveira R.C.O. (2021). Change in the Physiological and Biochemical Aspects of Tomato Caused by Infestation by Cryptic Species of Bemisia tabaci MED and MEAM1. Insects, 12, 1105. DOI: 10.3390/insects12121105.870704834940193
  48. Turfan, N., Alay, M. & Sariyildiz T. (2018). Effect of tree age on chemical compounds of ancient Anatolian black pine (Pinus nigra subsp. pallasiana) needles in Northwest Turkey. Forest – Biogeosciences and Forestry, 11(3), 406–410. DOI: 10.3832/ifor2665-011.
  49. Vítková, М., Müllerová, J., Sádlo, J. & Pergl J. (2017). Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. For. Ecol. Manag., 384, 287–302. DOI:10.1016/j.foreco.2016.10.057.614316730237654
  50. Vítková, M., Sádlo, J., & Roleček J. (2020). Robinia pseudoacacia – dominated vegetation types of Southern Europe: Species composition, history, distribution and management. Sci. Total Environ., 707, 134857. DOI: 10.1016/j.scitotenv.2019.1348578.
  51. Wagner, V., Chytrý, M., Jiménez-Alfaro, B., Pergl, J., Hennekens, S., Biurrun, I. & Pyšek P. (2017). Alien plant invasions in European woodlands. Divers. Distrib., 23(9), 969–981. DOI: 10.1111/ddi.12592
  52. Wilkaniec, A., Borowiak-Sobkowiak, B., Irzykowska, L., Breś, W., Świerk D., Pardela, L., Durak, R., Środulska-Wielgus, J. & Wielgus K. (2021). Biotic and abiotic factors causing the collapse of Robinia pseudoacacia L. veteran trees in urban environments. PLoS One, 16(1), e0245398. DOI:10.1371/journal.pone.0245398.781699433471798
  53. Zhao, H., Sun, X., Xue, M., Zhang, X. & Li Q. (2016). Antioxidant enzyme responses induced by whiteflies in tobacco plants in defense against aphids: Catalase may play a dominant role. PLoS ONE, 11, e0165454. DOI: 10.1371/journal.pone.0165454.508279927788203
  54. Zogli, P., Alvarez, S., Naldrett, M.J., Palmer, N.A., Koch, K.G., Pingault, L., Bradshaw, J.D., Twigg, P., Heng-Moss, T.M., Louis, J. & Sarath G. (2020). Greenbug (Schizaphis graminum) herbivory significantly impacts protein and phosphorylation abundance in switchgrass (Panicum virgatum). Scientific Reports, 10, 14842 DOI: 10.1038/s41598-020-71828-8.748118232908168
  55. Zverkovskyi, V.M., Sytnyk, S.A., Lovynska, V.M., Kharytonov, M.M. & Mykolenko S.Yu. (2017). Remediation potential of forest-forming species in the reclamation planting. Ukrainian Journal of Ecology, 7(3), 64–72. DOI:10.15421/2017_50.
DOI: https://doi.org/10.2478/eko-2022-0035 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 340 - 350
Submitted on: Jul 28, 2022
Accepted on: Sep 5, 2022
Published on: Dec 27, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Larysa Shupranova, Kyrylo Holoborodko, Iryna Loza, Olexander Zhukov, Olexander Pakhomov, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.