Have a personal or library account? Click to login

Definition of hot-spots to reduce the nitrogen losses from agricultural land to groundwater in Slovakia

Open Access
|Oct 2022

References

  1. Ackermann, A., Mahnkopf, J., Heidecke, C. & Venohr M. (2016). Reducing agricultural nitrogen inputs in the German Baltic Sea catchment - trends and policy options. Water Sci. Technol., 74, 1060‒1068. DOI: 10.2166/wst.2016.267.27642825
  2. Andjelov, M., Kunkel, R., Uhan, J. & Wendland F. (2014). Determination of nitrogen reduction levels necessary to reach groundwater quality targets in Slovenia. J. Environ. Sci. (China), 26, 1806‒1817. DOI: 10.1016/j.jes.2014.06.027.25193828
  3. Ascott, M.J., Gooddy, D.C., Fenton, O., Vero, O., Ward, R.S., Basu, N.B., Worrall, F., Van Meter, K. & Surridge B.W.J. (2021). The need to integrate legacy nitrogen storage dynamics and time lags into policy and practice. Sci. Total Environ., 781, 146698. DOI: 10.1016/j.scitotenv.2021.146698.33794450
  4. Ascott, M.J., Goody, D.C., Wang, L., Stuart, M.E., Lewis, M.A., Ward, R.S. & Binley A.M. (2017). Global patterns of nitrate storage in the vadose zone. Nature Communications, 8, 1416. DOI: 10.1038/s41467-017-01321-w.568025929123090
  5. Biernat, L., Taube, F., Vogeler, I., Reinsch, T., Kluß, Ch. & Loges R. (2020). Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agric. Ecosyst. Environ, 298, 106964. DOI: 10.1016/j.agee.2020.106964.
  6. Blicher-Mathiesen, G., Andersen, H.E., Cartensen, J., Bøtgesen, Ch.D., Hasler, B. & Windolf J. (2014). Mapping of nitrogen risk areas. Agric. Ecosyst. Environ, 195, 149‒160. DOI: 10.1016/j.agee.2014.06.004.
  7. Bowles, T.M., Atallah, S.S., Campbell, E.E., Gaudin, A.C.M., Wieder, W.R. & Grandy A.S. (2018). Addressing agricultural nitrogen loses in a changing climate. Nature Sustainability, 1, 399‒408. DOI: 10.1038/s41893-018-0106-0.
  8. Buczko, U. & Kuchenbuch R.O. (2010). Environmental indicators to assess the risk of diffuse nitrogen losses from agriculture. Environ. Manag., 45, 1201‒1222. DOI: 10.1007/s00267-010-9448-8.20306042
  9. Bujnovský, R. & Koco Š. (2019). The load of agricultural land by nutrients in relation to diffuse water pollution in Slovakia - actual view. In From environmental goals towards drinking water quality. In The electronic Proceedings of the International Conference Water Resources Protection 2019 (pp. 38‒43). Banská Bystrica: Slovak Environmental Agency.
  10. Bujnovský, R., Malík, P. & Švasta J. (2016). Evaluation of the risk of the diffuse pollution of groundwater by nitrogen substances from agricultural land use as background for allocation of effective measures. Ekológia (Bratislava), 35, 66‒77. DOI: 10.1515/eko-2016-0005.
  11. Cameira, M. R., Rolim, J., Valente, F., Faro, A., Dragosits, U. & Cordovil C.M.D.S. (2019). Spatial distribution and uncertainties of nitrogen budgets for agriculture in the Tagus river basin in Portugal – Implications for effectiveness of mitigation measures. Land Use Policy, 84, 278‒293. DOI: 10.1016/j.landusepol.2019.02.028.
  12. Cameira, M D., Rolim, J., Valente, F., Mesquita, M. & Dragosits Cordovil C.M. (2021). Translating the agricultural N surplus hazard into groundwater pollution risk: Implications for effectiveness of mitigation measures in nitrate vulnerable zones. Agric. Ecosyst. Environ, 306, 10724. DOI: 10.1016/j.agee.2020.107204.
  13. Capri, E., Civita, M., Corniello, A., Cusimano, G., De Maio, M., Ducci, D., Fait, G., Fiorucci, A., Hauser, S., Pisciotta, A., Pranzini, G., Trevisan, M., Delgado Huertas, A., Ferrari, F., Frullini, R., Nisi, B., Offi, M., Vaselli, O. & Vassallo M. (2009). Assessment of nitrate contamination risk: The Italian experience. Journal of Geochemical Exploration, 102, 71‒86. DOI: 10.1016/j.gexplo.2009.02.006.
  14. Cherry, K.A., Shepherd, M., Withers, P.J.A. & Mooney S.J. (2008). Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Sci. Total Environ., 406, 1‒23. DOI: 10.1016/j.scitotenv.2008.07.015.18771793
  15. Cibulka, R., Rajczyková, E., Bujnovský, R., Májovská, A., Ľuptáková, A., Paľušová, Z., Grófová, R., Gergeľová, Z., Halásová, M., Píš, V., Kališ, M. & Gáborík Š. (2020). Report on the state of implementation of Council Directive 91/676/EEC concerning the protection of water against pollution caused by nitrates from agricultural resources in the Slovak Republic (in Slovak). Bratislava: Ministry of Environment & Ministry of Agriculture and Rural Development. https://cdr.eionet.europa.eu/sk/eu/nid/.
  16. De Notaris, Ch., Rassmussen, J., Sørensen, P. & Olesen J.E. (2018). Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric. Ecosyst. Environ., 255, 1‒11. DOI: 10.1016/j.agee.2017.12.009.
  17. De Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J.C. & Louwagie G. (2021). Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total. Environ., 786, 147283. DOI: 10.1016/j.scitotenv.2021.147283.33958210
  18. European Commission (2020a). Communication from the Commisssion to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – EU Biodiversity Strategy for 2030. Bringing nature back into our lives. COM(2020) 380 final. Brussels: European Commission.
  19. European Commission (2020b). Communication from the Commisssion to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. COM(2020) 381 final. Brussels: European Commission.
  20. European Commission (2021). Report from the Commission to the Council and the European Parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2016–2019. COM(2021) 1000 final. Brussels: European Commission.
  21. European Environmental Agency (2016). EMEP/EEA air pollutant emission inventory guidebook 2016. Technical guidance to prepare national emission inventories. EEA technical report No. 21/2016. Luxembourg: Publications Office of the European Union.
  22. European Environment Agency (2021). Water and agriculture: towards sustainable solutions. EEA Report No. 17/2020. Copenhagen: European Environment Agency.
  23. European Commission (2022). Eurostat database. https://ec.europa.eu/eurostat/data/database.
  24. Eurostat (2013). Nutrient budgets – Methodology and handbook, Version 1.02. Luxembourg: Eurostat and OECD.
  25. Fan, J., Hao, M.D. & Malhi S.S. (2010). Accumulation of nitrate N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review. Can. J. Soil Sci., 90, 423‒429. DOI: 10.4141/CJSS09105.
  26. Haberle, J., Kusá, H., Svoboda, P. & Klír J. (2009). The changes of soil mineral nitrogen on farms between autumn and spring and modelled with simple leaching equation. Soil and Water Research, 4, 159‒167. DOI: 10.17221/7/2009-SWR.
  27. Hansen, B., Thorling, L., Schullehner, J., Termansen, M. & Dalgaard T. (2017). Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 7, 8566. DOI: 10.1038/s41598-017-07147-2.556124728819258
  28. Heldstab, J., Schäppi, B., Reutimann, J., Bach, M., Häußermann, U., Knoll, L., Klement, L., Breuer, L., Fuchs, S. & Weber T. (2020). Integrated Nitrogen Indicator, National Nitrogen Target and the Current Situation in Germany (DESTINO Report 1. Dessau-Roßlau, Germany: Umweltbundesamt.
  29. Hérivaux, C., Orban, Ph. & Brouyère S. (2013). It is worth protecting ground-water from diffuse pollution with agri-environmental schemes? A hydro-economic modeling approach. J. Environ. Manage., 128, 62‒74. DOI: 10.1016/j.jenvman.2013.04.058.23722175
  30. Højberg, A.L., Hansen, A.L., Wachniew, P., Żurek, A.J., Virtanen, S., Arustiene, J., Strömqvist, J., Rankinen, K. & Refsgaard J.Ch. (2017). Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin. Journal of Hydrology: Regional Studies, 12, 50‒68. DOI: 10.1016/j.ejrh.2017.04.001.
  31. ICPDR (2021a). Guidance document on sustainable agriculture in the Danube river basin. Vienna: International Commission for the Protection of the Danube River.
  32. ICPDR (2021b). Danube river basin management plan. Update 2021. Vienna: International Commission for the Protection of the Danube River.
  33. Klages, S., Aue, Ch., Reiter, K., Heidecke, C. & Osterburg B. (2022). Catch crops in Lower Saxony – more than 30 years of action against water pollution with nitrates: All in vain? Agriculture, 12, 447. DOI: 10.3390/agriculture12040447.
  34. Klages, S., Heidecke, C., Osterburg, B., Bailey, J., Calciu, I., Casey, C., Dalgaard, T., Frick, H., Glavan, M., D´Haene, K., Hofman, G., Leitão, I.A., Surdyk, N., Verloop, K. & Velthof G. (2020). Nitrogen surplus - a unified indicator for water pollution in Europe? Water, 12, 1197. DOI: 10.3390/w12041197.
  35. Knoll, L., Breuer, L. & Bach M. (2019). Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci. Total Environ., 668, 1317‒1327. DOI: 10.1016/j.scitotenv.2019.03.045.
  36. Knoll, L., Breuer, L. & Bach M. (2020a). Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning. Environmental Research Letters, 15, 064004. DOI: 10.1088/1748-9326/ab7d5c.
  37. Knoll, L., Häussermann, U., Breuer, L. & Bach M. (2020b). Spatial distribution of integrated nitrate reduction across the unsaturated zone and the groundwater body in Germany. Water, 12, 2456. DOI: 10.3390/w12092456.
  38. Kuhr, P., Haider, J., Kreins, P., Kunkel, R., Tetzlaff, B., Vereecken, H. & Wend-land F. (2013). Model based assessment of nitrate pollution of water resources on a federal state level for the dimensioning of agro-environmental reduction strategies. The North Rhine-Westphalia (Germany) case study. Water Resources Management, 27, 885‒909. DOI: 10.1007/s11269-012-0221-z.
  39. Kumar, R., Hesse, F., Rao, P.S.C., Musolff, A., Jawitz, J.W., Sarrazin, F., Samaniego, L., Fleckenstein, J.H., Rakovec, O., Thober, S. & Attinger S. (2020). Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe. Nature Communications, 11, 6302. DOI: 10.1038/s41467-020-19955-8.
  40. Kunkel, R., Herrmann, F., Kape, H.-E., Keller, L., Koch, F., Tetzlaff, B. & Wendland F. (2017). Simulation of terrestrial nitrogen fluxes in Mecklenburg-Vorpomern and scenario analyses how to reach N-quality targets for groundwater and coastal waters. Environmental Earth Sciences, 76, 146. DOI: 10.1007/s12665-017-6437-8.
  41. Kunkel, R., Kreins, P., Tetzlaff, B. & Wendland F. (2010). Forecasting the effects of EU policy measures on the nitrate pollution of groundwater and surface waters. J. Environ. Sci., 22, 872‒877. DOI: 10.1016/S1001-0742(09)60191-1.
  42. Kunkel, R. & Wendland F. (2006). Diffuse nitrate inputs into the ground and surface waters of the Rhine and Ems (in German). Schriften des Forschungszentrum Jülich, Reihe Umwelt, Band 62, Jülich: Germany.
  43. Kühling, I., Beiküfner, M., Vergara, M. & Trautz D. (2021). Effect of adapted N-fertilisation strategies on nitrate leaching and yield performance of arable crops in North-Western Germany. Agronomy, 11, 64. DOI: 10.3390/agronomy11010064.
  44. Laurent, F. & Ruelland D. (2011). Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale. J. Hydrol., 409, 440‒450. DOI: 10.1016/j.jhydrol.2011.08.041.
  45. Lawniczak, A.E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A. & Kanas K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ. Monit. Assess., 188, 172. DOI: 10.1007/s10661-016-5167-9.475760726887311
  46. Mas-Pla, J. & Menció A. (2019). Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Environmental Science and Pollution Research, 26, 2184‒2202. DOI: 10.1007/s11356-018-1859-8.633870129644604
  47. Mititelu-Ionuș, O., Simulescu, D. & Popescu S.M. (2019). Environmental assessment of agricultural activities and groundwater nitrate pollution susceptibility: a regional case study (Southwestern Romania). Environ. Monit. Assess., 191, 501. DOI: 10.1007/s10661-019-7648-0.31327079
  48. Musacchio, A., Re, V., Mas-Pla, J. & Sacchi E. (2020). EU Nitrates Directive, from theory to practice: Environmental effectiveness and influence of regional governance on its performance. Ambio, 49, 504‒516. DOI: 10.1007/s13280-019-01197-8.696504831115872
  49. Orellana-Macías, J.M., Merchán, D. & Causapé J. (2020). Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (Spain). Hydrogeology Journal, 28, 2207-2221. DOI: 10.1007/s10040-020-02184-0.
  50. Orellana-Macías, J.M., Perles Roselló, M.J. & Cauasapé J. (2021). A methodology for assessing groundwater pollution hazard by nitrates from agricultural sources: Application to the Gallocanta groundwater basin (Spain). Sustainability, 13, 6321. DOI: 10.3390/su13116321.
  51. Pulighe, G., Vanino, S., Lupia, F. & Altobelli F. (2014). Spatialized agricultural nitrogen balance of Veneto region, Northern Italy: Sources identification, assessment and policy relevance. Global Nest Journal, 16, 293‒305. DOI: 10.30955/gnj.001213.
  52. Sapek, A. (2005). Agricultural activities as a source of nitrates in groundwater. In L. Razowska-Jaworek & A. Sadurski (Eds.), Nitrates in groundwater (pp. 3‒13). London: CRC Press. DOI: 10.1201/9781482298352.
  53. Serra, J., Cordovil, C. M., Cruz, S., Cameira, M.R. & Hutchings N.J. (2019). Challenges and solutions in identifying agricultural pollution hotspots using gross nitrogen balances. Agric. Ecosyst. Environ., 283, 106568. DOI: 10.1016/j.agee.2019.106568.
  54. Sieling, K. & Kage H. (2006). N balance as an indicator of N leaching in an oil-seed rape - winter wheat - winter barley rotation. Agric. Ecosyst. Environ., 115, 261‒269. DOI: 10.1016/j.agee.2006.01.011.
  55. Stark, Ch.H. & Richards K.G. (2008). The continuing challenge of nitrogen loss to the environment: Environmental consequences and mitigation strategies. Dynamic Soil, Dynamic Plant, 2, 41‒55.
  56. Stuart, M.E., Ward, R.S., Ascott, M. & Gart A.J. (2016). Regulatory practice and transport modelling for nitrate pollution in groundwater. Keyworth: British Geological Survey.
  57. Teixeira, E.I., Johnstone, P., Chakwizira, E., de Ruiter, J., Malcolm, B., Shaw, N., Zyslowski, R., Khaembah, E., Sharp, J., Meenken, E., Fraser, P., Thomas, S., Brown, H. & Curtin D. (2016). Sources of variability in the effectiveness of winter cover crops for mitigating N leaching. Agric. Ecosyst. Environ., 220, 226‒235. DOI: 10.1016/j.agee.2016.01.019.
  58. van Grinsven, H.J.M., ten Berge, H.F.M., Dalgaard, T., Fraters, B., Durand, P., Hart, A., Hofman, G., Jacobsen, B.H., Lalor, S.T.J., Lesschen, J.P., Osterburg, B., Richards, K.G., Techen, A.-K., Vertès, F., Webb, J. & Willems W.J. (2012). Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive: a benchmark study. Biogeosciences, 9, 5143‒5160. DOI: 10.5194/bg-9-5143-2012.
  59. Vero, S.W., Basu, N.B., Van Meter, K., Richards, K.G., Mellander, P.E., Healy, M.G. & Fenton O. (2018). Review: the environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeology Journal, 26, 7‒22. DOI: 10.1007/s10040-017-1650-9.
  60. Wang, L., Butcher, A.S., Stuart, M.E., Goody, D.C. & Bloomfield J.P. (2013). The nitrate time bombs - a numerical way to investigate nitrate storage and lag time in the unsaturated zone. Environ. Geochem. Health, 35, 667‒681. DOI: 10.1007/s10653-013-9550-9.
  61. Wendland, F., Bergmann, S., Eisele, M., Gömann, H., Herrmann, F., Kreins, P. & Kunkel R. (2020). Model-based analysis of nitrate concentration in the leachate – the North Rhine-Westfalia case study, Germany. Water, 12, 550. DOI: 10.3390/w12020550.
  62. Wienhaus, S., Höper, H., Eisele, M., Meesenburg, H. & Schäfer W. (2008). Use of pedological and hydrogeological information for designating target areas for groundwater protection - Results of a model project (NO-LIMP) for the implementation of the EC - Water Framework Directive. GeoBerichte 9, Landesamt für Bergbau, Energie und Geologie: Hannover, Germany.
  63. Wolters, T., Cremer, N., Eisele, M., Herrmann, F., Kreins, P., Kunkel, R. & Wendland F. (2021). Checking the plausibility of modelled nitrate concentrations in the leachate on federal state scale in Germany. Water, 13, 226. DOI: 10.3390/w13020226.
DOI: https://doi.org/10.2478/eko-2022-0030 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 291 - 300
Submitted on: May 17, 2022
Accepted on: Aug 14, 2022
Published on: Oct 17, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Radoslav Bujnovský, Štefan Koco, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.