References
- Ahmad, M., Uniyal, S.K., Batish, D.R., Rathee, S., Sharma, P. & Singh H.P. (2021). Flower phenological events and duration pattern is influenced by temperature and elevation in Dhauladhar mountain range of Lesser Himalaya. Ecological Indicators, 129, 107902. DOI: 10.1016/j.ecolind.2021.107902.
- Alioua, Y., Bissati, S., Kherbouche, O. & Bosmans R. (2016). Spiders of Sebkhet El Melah (Northern Sahara, Algeria): review and new records. Serket, 15(1), 33–40.
- Almeida-Neto, M., Machado, G., Pinto-da-Rocha, R. & Giaretta A.A. (2006). Harvestman (Arachnida: Opiliones) species distribution along three Neotropical elevational gradients: an alternative rescue effect to explain Rapoport’s rule?. J. Biogeogr., 33(2), 361–375. DOI: 10.1111/j.1365-2699.2005.01389.x.
- Amari, H., Zebsa, R., Lazli, A., Bensouilah, S., Mellal, M.K., Mahdjoub, H. & Khelifa R. (2019). Differential elevational cline in the phenology and demography of two temporally isolated populations of a damselfly: Not two but one taxon?. Ecol. Entomol., 44(1), 93–104. DOI: 10.1111/een.12680.
- Angilletta Jr., M.J., Steury, T.D. & Sears M.W. (2004). Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integrative and Comparative Biology, 44(6), 498–509. DOI: 10.1093/icb/44.6.498.21676736
- Arroyo, M.T.K., Armesto, J.J. & Villagran C. (1981). Plant phenological patterns in the high Andean Cordillera of central Chile. J. Ecol., 69, 205–223. DOI: 10.2307/2259826.
- Bates, D., Mächler, M., Bolker, B. & Walker S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(i01). DOI: 10.18637/jss.v067.i01.
- Batzer, D. & Boix D. (2016). An introduction to freshwater wetlands and their invertebrates. In D. Batzer & D. Boix (Eds.), Invertebrates in freshwater wetlands (pp. 1–23). Cham: Springer. DOI: 10.1007/978-3-319-24978-0_1.
- Belozerov, V.N. (2012). Dormant stages and their participation in adjustment and regulation of life cycles of harvestmen (Arachnida, Opiliones). Entomol. Rev., 92(6), 688–713. DOI: 10.1134/S0013873812060073.
- Blanckenhorn, W.U. (1997). Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia, 109, 342–352. https://www.jstor.org/stable/422153010.1007/s00442005009228307530
- Blanckenhorn, W.U. (2000). The evolution of body size: what keeps organisms small?. Q. Rev. Biol., 75(4), 385–407. DOI: 10.1086/39362011125698
- Bonte, D., Baert, L., Lens, L. & Maelfait J.P. (2004). Effects of aerial dispersal, habitat specialisation, and landscape structure on spider distribution across fragmented grey dunes. Ecography, 27(3), 343–349. https://www.jstor.org/stable/368361510.1111/j.0906-7590.2004.03844.x
- Bosmans, R. & Abrous O. (1992). Studies on North African Linyphiidae. VI. The genera Pelecopsis Simon, Trichopterna Kulczynski and Ouedia gen. n. (Araneae: Linyphiidae). Bulletin of the British Arachnological Society, 9(3), 65–85.
- Bosmans, R. & Beladjal L. (1991). 12 new species of harpactea from Algeria with description of 3 unknown females (Araneae-Dysderidae). Rev. Suisse Zool., 98(3), 645–680. http://hdl.handle.net/1854/LU-357960
- Bosmans, R. & Chergui F. (1993). The genus Mecopisthes Simon in North Africa (Araneae, Linyphiidae, Erigoninae). Studies on North African Linyphiidae. Bulletin et Annales de la Societe Royale Belge d’Entomologie, 129(10–12), 341–358.
- Bowden, J.J., Høye, T.T. & Buddle C.M. (2013). Fecundity and sexual size dimorphism of wolf spiders (Araneae: Lycosidae) along an elevational gradient in the Arctic. Polar Biol., 36(6), 831–836. DOI: 10.1007/s00300-013-1308-6
- Brehm, G., Colwell, R.K. & Kluge J. (2007). The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr., 16(2), 205–219. DOI: 10.1111/j.1466-8238.2006.00281.x.
- Chatzaki, M., Lymberakis, P., Mitov, P. & Mylonas M. (2009). Phenology of Opiliones on an altitudinal gradient on Lefka Ori Mountains, Crete, Greece. J. Arachnol., 37(2), 139–146. https://www.jstor.org/stable/4023382010.1636/T07-38.1
- Chatzaki, M., Markakis, G. & Mylonas M. (2005). Phenological patterns of ground spiders (Araneae, Gnaphosidae) on Crete, Greece. Ecol. Mediterr., 31(1), 33–53.10.3406/ecmed.2005.1477
- Chown, S.L. & Klok C.J. (2003). Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography, 26(4), 445–455. https://www.jstor.org/stable/368356910.1034/j.1600-0587.2003.03479.x
- Cleland, E.E., Chuine, I., Menzel, A., Mooney, H.A. & Schwartz M.D. (2007). Shifting plant phenology in response to global change. Trends Ecol. Evol., 22(7), 357–365. DOI: 10.1016/j.tree.2007.04.003.17478009
- Foelix, R.F. (2011). Biology of spiders. Oxford: Oxford University Press.
- Fritz, R.S. & Morse D.H. (1985). Reproductive success and foraging of the crab spider Misumena vatia. Oecologia, 65(2), 194–200. DOI: 10.1007/BF00379217.28310665
- Hågvar, S., Østbye, E. & Melåen J. (1978). Pit-fall catches of surface-active arthropods in some high mountain habitats at Finse, south Norway. II. General results at group level, with emphasis on Opiliones, Araneida, and Coleoptera. Nor. J. Entomol., 25, 195–205.
- Halaj, J., Ross, D.W. & Moldenke A.R. (2000). Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos, 90(1), 139–152. DOI: 10.1034/j.1600-0706.2000.900114.x.
- Hodkinson, I.D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. Biol. Rev., 80(3), 489–513. DOI: 10.1017/S1464793105006767.16094810
- Honěk, A. (1993). Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos, 66(3), 483–492. DOI: 10.2307/3544943.
- Høye, T.T. & Hammel J.U. (2010). Climate change and altitudinal variation in sexual size dimorphism of arctic wolf spiders. Clim. Res., 41(3), 259–265. DOI: 10.3354/cr00855.
- Iglesias, P.P. & Pereyra M.O. (2020). Population dynamics and reproductive phenology of a harvestman in a tidal freshwater wetland. An. Acad. Bras. Ciênc., 92(1). DOI: 10.1590/0001-3765202020181123.32236299
- Illán, J.G., Gutiérrez, D., Diez, S.B. & Wilson R.J. (2012). Elevational trends in butterfly phenology: implications for species responses to climate change. Ecol. Entomol., 37(2), 134–144. DOI: 10.1111/j.1365-2311.2012.01345.x.
- Janzen, D.H. (1973). Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology, 54(3), 687–708. DOI: 10.2307/1935359.
- Jenkins, D.G. & Ricklefs R.E. (2011). Biogeography and ecology: two views of one world. Philos. Trans. R. Soc. B Biol. Sci., 366(1576), 2331–2335. DOI: 10.1098/rstb.2011.0064.313043421768149
- Kaplan, R.H. & Phillips P.C. (2006). Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog Bombina orientalis. Evolution, 60(1), 142–156. https://www.jstor.org/stable/409526910.1111/j.0014-3820.2006.tb01089.x
- Kharouba, H.M., Paquette, S.R., Kerr, J.T. & Vellend M. (2014). Predicting the sensitivity of butterfly phenology to temperature over the past century. Global Change Biology, 20(2), 504–514. DOI: 10.1111/gcb.12429.24249425
- Khelifa, R. (2017). Spatiotemporal pattern of phenology across geographic gradients in insects. Doctoral dissertation, University of Zurich.
- Khelifa, R., Deacon, C., Mahdjoub, H., Suhling, F., Simaika, J.P. & Samways M.J. (2021). Dragonfly conservation in the increasingly stressed African Mediterranean-type ecosystems. Frontiers in Environmental Science, 9, 660163. DOI: 10.3389/fenvs.2021.660163.
- Körner, C. (2007). The use of ‘altitude’in ecological research. Trends in Ecology & Evolution, 22(11), 569–574. DOI: 10.1016/j.tree.2007.09.006.17988759
- Laiolo, P., Illera, J.C. & Obeso J.R. (2013). Local climate determines intra-and interspecific variation in sexual size dimorphism in mountain grasshopper communities. J. Evol. Biol., 26(10), 2171–2183. DOI: 10.5061/dryad. c5097.
- Laiolo, P. & Obeso J.R. (2017). Life-history responses to the altitudinal gradient. In J. Catalan, J.M. Ninot & M.M. Aniz (Eds.), High mountain conservation in a changing world (pp. 253–283). Cham: Springer. DOI: 10.1007/978-3-319-55982-7.
- Liao, W.B., Lu, X. & Jehle R. (2014). Altitudinal variation in maternal investment and trade-offs between egg size and clutch size in the Andrew’s toad. J. Zool., 293(2), 84–91. DOI: 10.1111/jzo.12122.
- Lieth, H. (Ed.) (2013). Phenology and seasonality modeling (Vol. 8). Springer Science & Business Media.
- Lissner, J. (2011). The spiders of Europe and Greenland. http://www.jorgenlissner.dk
- Machado, G., Buzatto, B.A., García-Hernández, S. & Macías-Ordóñez R. (2016). Macroecology of sexual selection: a predictive conceptual framework for large-scale variation in reproductive traits. Am. Nat., 188(S1), S8–S27. DOI: 10.1086/687575.27513913
- McCain, C.M. (2007). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob. Ecol. Biogeogr., 16(1), 1–13. DOI: 10.1111/j.1466-8238.2006.00263.x.
- McCoy, E.D. (1990). The distribution of insects along elevational gradients. Oikos, 58(3), 313–322. 10.2307/354522210.2307/3545222
- Muff, P., Kropf, C., Frick, H., Nentwig, W. & Schmidt-Entling M. (2009). Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conservation and Diversity, 2(1), 36–44. DOI: 10.1111/j.1752-4598.2008.00037.x.
- Pitnick, S.S., Hosken, D.J. & Birkhead T.R. (Eds.) (2008). Sperm biology: an evolutionary perspective. Academic Press.
- Platnick N.I. (2011). The World Spider Catalog. Version 12.0. The American Museum of Natural History.
- R Core Team (2021). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/
- Rahbek, C. (1995). The elevational gradient of species richness: a uniform pattern?. Ecography, 18(2), 200–205. DOI: 10.1111/j.1600-0587.1995. tb00341.x.
- Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Lett., 8(2), 224–239. DOI: 10.1111/j.1461-0248.2004.00701.x.
- Rao, D. (2017). Habitat selection and dispersal. In Behaviour and Ecology of Spiders (pp. 85–108). Springer, Cham. DOI: 10.1007/978-3-319-65717-2_4
- Reed, D.H. & Nicholas A.C. (2008). Spatial and temporal variation in a suite of life-history traits in two species of wolf spider. Ecol. Entomol., 33(4), 488–496. DOI: 10.1111/j.1365-2311.2008.00994.x.
- Roff, D. (Ed.) (1993). Evolution of life histories: theory and analysis. Springer Science & Business Media.
- Rypstra, A.L., Carter, P.E., Balfour, R.A. & Marshall S.D. (1999). Architectural features of agricultural habitats and their impact on the spider inhabitants. Journal of Arachnology, 27, 371–377.
- Schmalhofer, V.R. (2001). Tritrophic interactions in a pollination system: impacts of species composition and size of flower patches on the hunting success of a flower-dwelling spider. Oecologia, 129(2), 292–303. DOI: 10.1007/s00442010072628547608
- Stamou, G.P. (1998). Arthropods of Mediterranean-type ecosystems. Berlin, New York, London: Springer. DOI: 10.1007/978-3-642-79752-1.
- Stańska, M. & Stański T. (2017). Body size distribution of spider species in various forest habitats. Pol. J. Ecol., 65(4), 359–370. DOI: 10.3161/15052 249PJE2017.65.4.005.
- Stańska, M., Stański, T., Wielgosz, E. & Hajdamowicz I. (2018). Impact of habitat complexity on body size of two spider species, Alopecosa cuneata and A. pulverulenta (Araneae, Lycosidae), in river valley grasslands. Pol. J. Environ. Stud., 27(2), 853–859. DOI: 10.15244/pjoes/75806.
- Sundqvist, M.K., Sanders, N.J. & Wardle D.A. (2013). Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics, 44, 261–280. DOI: 10.1146/annurev-ecolsys-110512-135750.
- Valenzuela-Sánchez, A., Cunningham, A.A., & Soto-Azat C. (2015). Geographic body size variation in ectotherms: effects of seasonality on an anuran from the southern temperate forest. Frontiers in Zoology, 12, 37. DOI: 10.1186/s12983-015-0132-y.469037926705403
- Whitehouse, M.E., Hardwick, S., Scholz, B.C., Annells, A.J., Ward, A., Grundy, P.R. & Harden S. (2009). Evidence of a latitudinal gradient in spider diversity in Australian cotton. Austral Ecol., 34(1), 10–23. DOI: 10.1111/j.1442-9993.2008.01874.x.
- Whitney, K.D. (2004). Experimental evidence that both parties benefit in a facultative plant–spider mutualism. Ecology, 85(6), 1642–1650. https://www.jstor.org/stable/345058910.1890/03-0282
- Wilhelm, F.M. & Schnidler D.W. (2000). Reproductive strategies of Gammarus lacustris (Crustacea: Amphipoda) along an elevation gradient. Funct. Ecol., 14(4), 413–422. DOI: 10.1046/j.1365-2435.2000.00426.x.
- Willig, M.R. & Bloch C.P. (2006). Latitudinal gradients of species richness: a test of the geographic area hypothesis at two ecological scales. Oikos, 112(1), 163–173. https://www.jstor.org/stable/354856910.1111/j.0030-1299.2006.14009.x
- Wolda, H. (1987). Altitude, habitat and tropical insect diversity. Biol. J. Linn. Soc., 30(4), 313–323. DOI: 10.1111/j.1095-8312.1987.tb00305.x.
- World Spider Catalog (2022). World Spider Catalog. Version 23.0. Natural History Museum Bern. http://wsc.nmbe.ch.
- Zettel, J. (2000). Alpine Collembola: adaptations and strategies for survival in harsh environments. Zoology, 102, 73–89.