Have a personal or library account? Click to login

Predicting suitable habitats of the major forest trees in the Saïda region (Algeria): A reliable reforestation tool

Open Access
|Oct 2022

References

  1. Abolmaali, S.M.R., Tarkesh, M. & Bashari H. (2018). MaxEntmodeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecological Informatics, 43, 116–123. DOI: 10.1016/j.ecoinf.2017.10.002.
  2. Abrha, H., Birhane, E., Hagos, H. & Manaye A. (2018). Predicting suitable habitats of endangeredJuniperusprocera tree under climate change in Northern Ethiopia. Journal of Sustainable Forestry, 37(8), 842–853. DOI: 10.1080/10549811.2018.1494000.
  3. Achhal, A., Akabli, O., Barbero, M., Benabid, A., M’hirit, A., Peyre, C., Quezel, P. & Rivas-Martinez S. (1980). A propos de la valeurbioclimatiqueetdynamique de quelques essences forestières au Maroc. Ecol. Mediterr., 5, 211–249.10.3406/ecmed.1979.960
  4. Agnew, M.D. & Palutikof J.P. (2000). GIS-based construction of baseline climatologies for the Mediterranean using terrain variables. Clim. Res., 14(2), 115–127. DOI: 10.3354/cr014115.
  5. Alcaraz, C. (1982). La végétation de l’ouest Algérien. PhD Thesis, University of Perpignan.
  6. Ayache, F., Santana, V.M. & Baeza M.J. (2020). Environmental and anthropogenic drivers of coniferous species distribution in Mediterranean drylands from North West Algeria. Folia Geobot., 55(1), 15–27. DOI: 10.1007/s12224-020-09362-8.
  7. Benhassaini, H., Mehdadi, Z., Hamel, L. & Belkhodja M. (2007). Phytoécologie de Pistacia atlantica Desf. subsp. Atlantica dans le Nord-Ouestalgérien. Science et Changements Planétaires/Sécheresse, 18(3), 199‒205. DOI : 10.1684/sec.2007.0086.
  8. Boudy, P. (1952). Guide du forestieren Afrique du Nord. Paris: La Maison Rustique.
  9. Brague-Bouragba, N., Brague, A., Dellouli, S. & Lieutier F. (2007). Comparaison des peuplements de Coléoptères et d’Araignéesen zone reboisée et en zone steppique dans une région présaharienne d’Algérie. C.R.Biol., 330(12), 923–939. DOI: 10.1016/j.crvi.2007.09.004.18068651
  10. Das, A., Nagendra, H., Anand, M. & Bunyan M. (2015). Topographic and bioclimatic determinants of the occurrence of forest and grassland in tropical montane forest-grassland mosaics of the Western Ghats, India. PloS One, 10(6), e0130566. DOI: 10.1371/journal.pone.0130566.448830126121353
  11. Djebbouri, M. & Terras M. (2019). Floristic diversity with particular reference to endemic, rare or endangered flora in forest formations of Saïda (Algeria). International Journal of Environmental Studies, 76(6), 990–1003. DOI: 10.1080/00207233.2019.1620541.
  12. Dou, J., Yunus, A.P., Merghadi, A., Wang, X. & Yamagishi H. (2021). A Comparative Study of Deep Learning and Conventional Neural Network for Evaluating Landslide Susceptibility Using Landslide Initiation Zones. In F. Guzzetti et al. (Eds.), Understanding and Reducing Landslide Disaste Risk (pp. 215–223). Springer. DOI: 10.1007/978-3-030-60227-7_23.
  13. Elith, J., Graham, C.H., Anderson., R.P., Dudík., M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M.M., Townsend Peterson, A., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. & Zimmermann N.E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. DOI: 10.1111/j.2006.0906-7590.04596.x.
  14. Fourcade, Y., Engler, J.O., Rödder, D. & Secondi J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PloS One, 9(5), e97122. DOI: 10.1371/journal. pone.0097122.
  15. Giles, J.R., Peterson, A.T., Busch, J.D., Olafson, P.U., Scoles, G.A., Davey, R.B., Mathews Pound, J., Kammlah, D.M., Lohmezer, K.H. & Wagner D.M. (2014). Invasive potential of cattle fever ticks in the southern United States. Parasites & Vectors, 7(1), 189–189. DOI: 10.1186/1756-3305-7-189.
  16. Guisan, A., Edwards, J. & Hastie T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model., 157(2–3), 89–100. DOI: 10.1016/S0304-3800(02)00204-1.
  17. Guisan, A. & Thuiller W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. DOI: 10.1111/j.1461-0248.2005.00792.x.34517687
  18. Hadjadj-Aoul, S. (1995). Les peuplements du thuya de berbérieen Algérie: phytoécologieSyntaxonomie, potentialités sylvicoles. PhD Thesis, University Aix-Marseille III. http://www.theses.fr/1995AIX30045.
  19. Hamdi, L., Defaflia, N., Fehdi, C. & Merghadi A. (2020). InSAR Investigation on DRAA-Douamis Sinkholes in Cheria Northeastern of Algeria. In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium (pp. 1034–1037). IEEE. DOI: 10.1109/IGARSS39084.2020.9323835.
  20. Hardlife, M., Henry, N., Paradzayi, T., Mpakairi, K.S. & Eliah G. (2020). Predicting the invasion of a southern African savannah by the black wattle (Acacia mearnsii). J. For. Res., 31(5), 1995–2003. DOI: 10.1007/s11676-019-00975-0.
  21. Hengl, T.& Reuter H.I. (2008). Geomorphometry: concepts, software, applications. Elsevier.
  22. Khosravi, R., Hemami, M.R., Malekian, M., Flint, A. & Flint L. (2016). Maxent modeling for predicting potential distribution of goitered gazelle in central Iran: the effect of extent and grain size on performance of the model. Tur. J. Zool., 40(4), 574–585. DOI: 10.3906/zoo-1505-38.
  23. Kumar, S. & Stohlgren T.J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1(4), 94–98. DOI: 10.5897/JENE.9000071.
  24. Laala, A., Alatou, D. & Adimi A. (2021). Predicting potential habitat suitability of Quercus suber L. in Algeria under climate change scenarios. Afr. J. Ecol., 59(4), 976–987. DOI: 10.1111/aje.12906.
  25. Laborde, J.P. (1993). Carte pluviométrique de l’Algérie du Nord à l’échelle du 1/500000. Agence Nationale des Ressources Hydrauliques, projet PNUD/ALG/88/021, une carte avec notice explicative.
  26. Lassueur, T., Joost, S. & Randin C.F. (2006). Very high resolution digital elevation models: Do they improve models of plant species distribution?. Ecol. Model., 198(1–2), 139–153. DOI: 10.1016/j.ecolmodel.2006.04.004.
  27. Lecours, V., Dolan, M.F., Micallef, A. & Lucieer V.L. (2016). A review of marine ggeomorphometry, the quantitative study of the seafloor. Hydrology and Earth System Sciences, 20(8), 3207–3244. DOI: 10.5194/hess-20-3207-2016.
  28. Leempoel, K., Parisod, C., Geiser, C., Daprà, L., Vittoz, P. & Joost S. (2015). Very high-resolution digital elevation models: are multi-scale derived variables ecologically relevant?. Methods in Ecology and Evolution, 6(12), 1373–1383. DOI: 10.1111/2041-210X.12427.
  29. Mansour, Z., Abderahmane, H. & Soraya R. (2020). Using Topographic and Geographic Terrain Characteristics for Mapping Annual Rainfall in the Tafna Watershed, Western Algeria. International Journal of Water Resources and Arid Environments, 9(1), 80–86. https://www.psipw.org/attachments/article/2054/7e.pdf
  30. Meddi, M. & Hubert P. (2003). Impact de la modification du régime pluviométrique sur les ressources en eau du Nord-Ouest de l’Algérie. In IAHS Publication (pp. 229–235). Montpellier.
  31. Meddi, M., Meddi, H., Toumi, S. & Mehaiguen M. (2013). Regionalization of rainfall in North-Western Algeria. Geographia Technica, 17(1), 56–69. http://www.technicalgeography.org/pdf/1_2013/07_1_2013.pdf
  32. Merghadi, A., Yunus, A.P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D.T., Avtar, R. & Abderrahmane B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207, 103225. DOI: 10.1016/j.ear-scirev.2020.103225.
  33. Mod, H.K., Scherrer, D., Luoto, M. & Guisan A. (2016). What we use is not what we know: environmental predictors in plant distribution models. J. Veg. Sci., 27(6), 1308–1322. DOI: 10.1111/jvs.12444.
  34. Nicolaci, A., Travaglini, D., Menguzzato, G., Nocentini, S., Veltri, A. & Iovino F. (2014). Ecological and anthropogenic drivers of Calabrian pine (Pinus nigra JF Arn. ssp. laricio (Poiret) Maire) distribution in the Sila mountain range. iForest-Biogeosciences and Forestry, 8(4), 497–508. DOI: 10.3832/ifor1041-007.
  35. Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Townsend Peterson A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J.Biogeogr., 34(1), 102–117. DOI: 10.1111/j.1365-2699.2006.01594.x.
  36. Phillips, S.J., Anderson, R.P. & Schapire R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model., 190(3–4), 231–259. DOI: 10.1016/j.ecolmodel.2005.03.026.
  37. Phillips, S.J. & Dudík M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. DOI: 10.1111/j.0906-7590.2008.5203.x.
  38. Quézel, P. (2002). Réflexions sur l’évolution de la flore et de la végétation au Maghreb Méditerranéen.Vol. 1. Paris: Ibis Press.
  39. Quézel, P. & Médail F. (2003). Ecologie et biogéographie des forêts du bassinMéditerranéen. Vol. 572. Paris: Elsevier.
  40. Sanders, T.G., Pitman, R. & Broadmeadow M.S.(2014). Species-specific climate response of oaks (Quercus spp.) under identical environmental conditions. iForest-Biogeosciences and Forestry, 7(2), 61–69. DOI: 10.3832/ifor0911-007.
  41. Sharma, S., Arunachalam, K., Bhavsar, D. & Kala R. (2018). Modeling habitat suitability of Perillafrutescens with MaxEnt in Uttarakhand—A conservation approach. Journal of Applied Research on Medicinal and Aromatic Plants, 10, 99–105. DOI: 10.1016/J.JARMAP.2018.02.003.
  42. Society for Ecological Restoration International Science & Policy Working Group (2004). The SER International Primer on Ecological Restoration.https://cdn.ymaws.com/www.ser.org/resource/resmgr/custom-pages/publications/ser_publications/ser_primer.pdf
  43. Terras, M. (2011). Typologie, cartographie des stations forestières et modélisations des Peuplements forestiers. Cas des massifs forestiers de la wilaya de Saida (Algérie). PhD Thesis, University of Tlemcen. http://dspace.univ-tlemcen.dz/handle/112/8446.
  44. Zhang, L., Liu, S., Sun, P., Wang, T., Wang, G., Wang, L. & Zhang X. (2016). Using DEM to predict Abiesfaxoniana and Quercusaquifolioides distributions in the upstream catchment basin of the Min River in southwest China. Ecological Indicators, 69, 91–99. DOI: 10.1016/j. ecolind.2016.04.008.
  45. Zouidi, M., Borsali, A.H., Allam, A. & Gros R. (2019). Microbial activities and physicochemical properties of coniferous forest soils in two forest areas (arid and semi arid) of western Algeria. Bosque (Valdivia), 40, 163–171. DOI: 10.4067/S0717-92002019000200163.
DOI: https://doi.org/10.2478/eko-2022-0024 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 236 - 246
Submitted on: Oct 3, 2021
Accepted on: Jan 25, 2022
Published on: Oct 17, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Mohammed Djebbouri, Mohamed Zouidi, Mohamed Terras, Abdelaziz Merghadi, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.