Borhidi, A. (1995). Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Bot. Hung., 39, 97–181.
Côté, S., Beauregard, R., Margni, M. & Bélanger L. (2021). Using naturalness for assessing the impact of forestry and protection on the quality of ecosystems in life cycle assessment. Sustainability, 13(16), 8859. DOI: 10.3390/su13168859.
Cseresnyés, I., Cseresnyés-Bózsing, E., Tamás, J., Barina, Z. & Csontos P. (2014). Effect of Austrian pine on naturalness and succession of vegetation in reclaimed bauxite quarries. Applied Ecology and Environmental Research, 12(4), 931–946. DOI: 10.15666/aeer/1204_931946.
Dray, S., Choler, P., Dolédec, S., Peres-Neto, P.R., Thuiller, W., Pavoine, S. & Ter Braak C.J.F. (2014). Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 95(1), 14–21. DOI: 10.1890/13-0196.1.24649641
Dray, S. & Dufour A.B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20. DOI: 10.18637/jss.v022.i04.
Dzwonko, Z. (2001). Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J. Appl. Ecol., 38(5), 942–951. DOI: 10.1046/j.1365-2664.2001.00649.x.
Ellenberg, H., Weber, H.E., Dull, R., Wirth, V., Werner, W. & Paulissen D. (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–248.
Erdős, L., Bátori, Z., Penksza, K., Dénes, A., Kevey, B., Kevey, D., Magnes, M., Sengl, P. & Tölgyesi C. (2017). Can naturalness indicator values reveal habitat degradation? A test of four methodological approaches. Pol. J. Ecol., 65(1), 1–13. DOI: 10.3161/15052249PJE2017.65.1.001.
Erdős, L., Kröel-Dulay, G., Bátori, Z., Kovács, B., Németh, C., Kiss, P.J. & Tölgyesi C. (2018). Habitat heterogeneity as a key to high conservation value in forest-grassland mosaics. Biol. Conserv., 226, 72–80. DOI: 10.1016/j.biocon.2018.07.029
Frank, D. & Klotz S. (1990). Biologisch-ökologische Daten zur Flor der DDR. Wissenschaftliche Beiträge der Martin-Luther-Universit at Halle, 32, 1–167.
Goncharenko, I. & Kovalenko O. (2019). Oak forests of the class Quercetea pubescentis in Central-Eastern Ukraine. Thaiszia - Journal of Botany, 29(2), 191−215. DOI: 10.33542/TJB2019-2-05.
Goncharenko, I., Semenishchenkov, Y., Tsakalos, J.L. & Mucina L. (2020). Thermophilous oak forests of the steppe and forest-steppe zones of Ukraine and Western Russia. Biologia, 75(3), 337–353. DOI: 10.2478/s11756-019-00413-w.
Goncharenko, I.V. & Yatsenko H.M. (2020). Phytosociological study of the forest vegetation of Kyiv urban area (Ukraine). Hacquetia, 19(1), 99–126. DOI: 10.2478/hacq-2019-0012.
Hill, M.O., Roy, D.B. & Thompson K. (2002). Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J. Appl. Ecol., 39(5), 708–720. DOI: 10.1046/j.1365-2664.2002.00746.x.
Kowarik, I. (1990). Some responses of flora and vegetation to urbanization in Central Europe. In H. Sukopp, S. Hejny & I. Kowarik (Eds.), Plants and plant communities in the urban environment (pp. 45–74). Hague: SPB Academic Publishing.
Kunakh, O.M., Lisovets, O.I., Yorkina, N.V. & Zhukova Y.O. (2021a). Phytoindication assessment of the effect of reconstruction on the light regime of an urban park. Biosystems Diversity, 29(3), 84–93. DOI: 10.15421/012135.
Kurdyukova, O.N. (2015). Botanical and biological characteristics of weed sinusia of agrophytocenoses of the left-bank steppe of Ukraine and methods of their control. Lugansk: Lugansk National Taras Shevchenko University.
Lykholat, Y., Khromykh, N., Didur, O., Kotovych, O., Kovalenko, I., Kovalenko, V., Tsyliuryk, O. & Lykholat T. (2021). The study of transformed herbaceous vegetation in the area flooded due to coal mine workings. Ekológia (Bratislava), 40(3), 222–229. DOI: 10.2478/eko-2021-0024.
Moravčík, M., Sarvašová, Z., Merganič, J. & Schwarz M. (2010). Forest naturalness: Criterion for decision support in designation and management of protected forest areas. Environ. Manag., 46(6), 908–919. DOI: 10.1007/s00267-010-9506-2.20563808
Müller, J., Engel, H. & Blaschke M. (2007). Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. European Journal of Forest Research, 126(4), 513–527. DOI: 10.1007/s10342-007-0173-7.
R Core Team (2020). A language and environment for statistical computing. In R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (Vol. 2, p. https://www.R-project.org). http://www.r-project.org
Seidling, W. & Fischer R. (2008). Deviances from expected Ellenberg indicator values for nitrogen are related to N throughfall deposition in forests. Ecological Indicators, 8(5), 639–646. DOI: 10.1016/j.ecolind.2007.09.004.
Sengl, P., Magnes, M., Erdős, L. & Berg C. (2017). A test of naturalness indicator values to evaluate success in grassland restoration. Community Ecol., 18(2), 184–192. DOI: 10.1556/168.2017.18.2.8
Terwayet Bayouli, I., Terwayet Bayouli, H., Dell’Oca, A., Meers, E. & Sun J. (2021). Ecological indicators and bioindicator plant species for bio-monitoring industrial pollution: Eco-based environmental assessment. Ecological Indicators, 125, 107508. DOI: 10.1016/j.ecolind.2021.107508.
Tölgyesi, Cs. & Körmöczi L. (2012). Structural changes of a pannonian grassland plant community in relation to the decrease of water availability. Acta Bot. Hung., 54(3–4), 413–431. DOI: 10.1556/ABot.54.2012.3-4.17.
Westhoff, V. (1971). The dynamic structure of plant communities in relation to the objectives of conservation. In E. Duffey & A.S. Watt (Eds.), The scientific management of animal and plant communities for conservation (pp. 3–14). Oxford: Blackwell.
Westhoff, V. & Van Der Maarel E. (1978). The Braun-Blanquet Approach. In R.H. Whittaker (Ed.), Classification of plant communities (pp. 287–399). Dordrecht: Springer. DOI: 10.1007/978-94-009-9183-5_9.
Winter, S. (2012). Forest naturalness assessment as a component of bio-diversity monitoring and conservation management. Forestry, 85(2), 293–304. DOI: 10.1093/forestry/cps004.
Yao, H., Ma, J., Fan, Y., Chen, X. & Tian M. (2019). Assessing the naturalness of a restored coal mine area on the Loess Plateau, China. PLOS ONE, 14(7), e0219447. DOI: 10.1371/journal.pone.0219447.662569831299049
Yorkina, N., Maslikova, K., Kunah, O. & Zhukov O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17(1), 29–45.10.37828/em.2018.17.5
Zhukov, A. & Gadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: The ecological approach. Ekológia (Bratislava), 35(3), 263–278. DOI: 10.1515/eko-2016-0021.
Zhukov, A.V. & Zadorozhnaya G.А. (2016). Spatio-temporal dynamics of the penetration resistance of recultivated soils formed after open cast mining. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(2), 324–331. DOI: 10.15421/011642.
Zhukov, O., Kunah, O., Dubinina, Y., Zhukova, Y. & Ganzha D. (2019a). The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest. Ekológia (Bratislava), 38(3), 253–272. DOI: 10.2478/eko-2019-0020.
Zhukov, O.V., Kunah, O.M., Dubinina, Y.Y., Fedushko, M.P., Kotsun, V.I., Zhukova, Y.O. & Potapenko O.V. (2019b). Tree canopy affects soil macrofauna spatial patterns on broad- And meso-scale levels in an Eastern European poplar-willow forest in the floodplain of the River Dnipro. Folia Oecologica, 46(2), 101–114. DOI: 10.2478/foecol-2019-0013.
Zhukov, O., Yorkina, N., Budakova, V. & Kunakh O. (2021). Terrain and tree stand effect on the spatial variation of the soil penetration resistance in Urban Park. International Journal of Environmental Studies, 1–17. DOI: 10.1080/00207233.2021.1932368.