Have a personal or library account? Click to login
New Investigation and Challenge for Spatiotemporal Drought Monitoring Using Bottom-Up Precipitation Dataset (SM2RAIN-ASCAT) and NDVI in Moroccan Arid and Semi-Arid Rangelands Cover

New Investigation and Challenge for Spatiotemporal Drought Monitoring Using Bottom-Up Precipitation Dataset (SM2RAIN-ASCAT) and NDVI in Moroccan Arid and Semi-Arid Rangelands

Open Access
|Apr 2022

References

  1. Adjabi, A., Sidi, H., Bounar, R. & Naseri H. (2019). Floristic distribution according to the edaphic parameters of a steppe zone, case of study: the nature reserve “El-mergueb” m’sila, Algeria. Ekológia (Bratislava), 38(4), 336–352. DOI: 10.2478/eko-2019-0025.10.2478/eko-2019-0025
  2. Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., Figa, J. & Anderson C. (2007). Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT), Geophysical Research Letters, 34(20), 1−5. DOI: 10.1029/2007GL031088.10.1029/2007GL031088
  3. Barthlott, C., Hauck, C., Schädler, G., Kalthoff, N. & Kottmeier C. (2011). Soil moisture impacts on convective indices and precipitation over complex terrain. Meteorologische Zeitschrift, 20(2), 185–197. DOI: 10.1127/0941-2948/2011/0216.10.1127/0941-2948/2011/0216
  4. Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S.,. Kidd, R., Dorigo, W., Wagner, W. & Levizzani V. (2014). Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res., 119(9), 5128−5141. DOI: 10.1002/2014JD021489.10.1002/2014JD021489
  5. Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., Schüller, L, Bojkov, B. & Wagner W. (2019). SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations. Earth System Science Data, 11, 1583–1601. DOI: 10.5194/essd-11-1583-2019.10.5194/essd-11-1583-2019
  6. Brocca, L., Moramarco, T., Melone, F. & Wagner W. (2013). A new method for rainfall estimation through soil moisture observations. Geophysical Research Letters, 40, 853–858. DOI : 10.1002/grl.50173.10.1002/grl.50173
  7. Brocca, L., Pellarin, T., Crow, W.T., Ciabatta, L., Massari, C., Ryu, D., Su, C.-H., Rudiger, C. & Kerr Y. (2016). Rainfall estimation by inverting SMOS soil moisture estimates: a comparison of different methods over Australia. J. Geophys. Res., 121(20), 12062–12079. DOI: 10.1002/2016JD025382.10.1002/2016JD025382
  8. Chen, F., Crow, W.T. & Holmes T.H. (2012). Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the soil moisture analysis rainfall tool. Journal of Applied Remote Sensing, 6(1), 063604. DOI: 10.1117/1.JRS.6.063604.10.1117/1.JRS.6.063604
  9. Chen, T. (2014). Terrestrial plant productivity and soil moisture constraints. Ph.D. thesis, VU University Amsterdam.
  10. Crow, W.T. (2003). Correcting land surface model predictions for the impact of temporally sparse rainfall rate measurements using an Ensemble Kalman filter and surface brightness temperature observations. Journal of Hydrometeorology, 4(5), 960−973. DOI: 10.1175/1525-7541(2003)004<0960:CLSMPF>2.0.CO;2.10.1175/1525-7541(2003)004<0960:CLSMPF>2.0.CO;2
  11. Crow, W.T., Huffman, G.F., Bindlish, R. & Jackson T.J. (2009). Improving satellite rainfall accumulation estimates using spaceborne soil moisture retrievals. Journal of Hydrometeorology, 10(1), 199–212. DOI: 10.1175/2008JHM986.1.10.1175/2008JHM986.1
  12. Crow, W.T. & Zhan X. (2007). Continental-scale evaluation of remotely sensed soil moisture products. IEEE Geoscience and Remote Sensing Letters, 4(3), 451−455. DOI: 10.1109/LGRS.2007.896533.10.1109/LGRS.2007.896533
  13. Dadach, M., Benajaoud, A. & Mehdad Z. (2021). Salt and drought effect on germination and initial growth of lavandula stoechas: a potential candidate for rehabilitation of the mediterranean disturbed coastal lands. Ekológia (Bratislava), 40(4), 301–311. DOI: 10.2478/eko-2021-0032.10.2478/eko-2021-0032
  14. Eerens, H. & Haesen D. (2016). SPIRITS Manual, Software for the Processing and Interpretation of Remotely sensed Image Time Series (VITO). Version: 1.5.0.
  15. Faisal, S., Mujtaba, S.M. & Mahboob A.W. (2019). Polyethylene Glycol mediated osmotic stress impacts on growth and biochemical aspects of wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology, 22(3), 213–223. DOI: 10.1007/s12892-018-0166-010.1007/s12892-018-0166-0.
  16. Figa-Saldaña, J., Wilson, J. J. W., Attema, E., Gelsthorpe, R., Drinkwater, M.R. & Stoffelen, M.R.A. (2002). The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform : A follow on for European wind scatterometers. Canadian Journal of Remote Sensing, 28(3), 404–412. DOI: 10.5589/m02-035.10.5589/m02-035
  17. Forootan, E., Khaki, M., Schumacher, M., Wulfmeyer, V., Mehrnegar, N., van Dijk, A.I.J.M., Brocca, L., Farzaneh, S., Akinluyi, F., Ramillien, G., Shum, C. K., Awange, J. & Mostafaie A. (2019). Understanding the global hydrological droughts of 2003–2016 and their relationships with tele-connections. Sci. Total Environ., 650, 2587–2604. DOI: 10.1016/j.scitotenv.2018.09.231.10.1016/j.scitotenv.2018.09.23130293010
  18. Herold, N., Alexander, L. V., Donat, M. G., Contractor, S. & Becker A. (2016). How much does it rain over land?. Geophysical Research Letters, 43, 341–348. DOI: 10.1002/2015GL066615.10.1002/2015GL066615
  19. Hofste, R.W., Reig, P. & Schleifer L. (2019). 17 Countries, Home to One-Quarter of the World‘s Population, Face Extremely High Water Stress. World Resources Institute.
  20. Hossain, F. & Anagnostou E.N. (2004). Assessment of current passive-microwave- and infrared-based satellite rainfall remote sensing for flood prediction. J. Geophys. Res., 109, D07102. DOI: 10.1029/2003JD003986.10.1029/2003JD003986
  21. Isaksen, L. & Stoffelen A. (2000). ERS scatterometer wind data impact on ECMWF’s tropical cyclone forecasts. IEEE Transactions on Geoscience and Remote Sensing, 38(4), 1885–1892. DOI: 10.1109/36.851771.10.1109/36.851771
  22. Jenkerson, C.B., Maiersperger, T.K. & Schmidt G.L. (2010). eMODIS: A user-friendly data source. Restor: U.S.Geological Survey.
  23. Jerez, S., Montavez, J.P., Gomez-Navarro, J.J., Jimenez-Guerrero, P., Jimenez, J.M. & Gonzalez-Rouco J.F. (2010). Temperature sensitivity to the land-surface model in MM5 climate simulations over the Iberian Peninsula, Meteorologische Zeitschrift, 19(4), 363–374. DOI: 10.1127/0941-2948/2010/0473.10.1127/0941-2948/2010/0473
  24. Kerr, Y.H. (2007). Soil moisture from space: Where are we? Hydrogeology Journal, 15, 117–120. DOI : 10.1007/s10040-006-0095-3
  25. Khan, M.A. & Gulzar S. (2003). Germination responses of Sporobolus ioclados: a saline desert grass. J. Arid Environ., 53, 387–394. DOI: 10.1006/jare.2002.1045.10.1006/jare.2002.1045.
  26. Kliment, J. & Valachovič M. (Eds.) (2007). Plant communities of Slovakia. 4. Alpine vegetation (in Slovak). Bratislava: Veda, vydavateľstvo SAV.
  27. Koohi, S., Azizian, A. & Brocca L. (2021). Spatiotemporal drought monitoring using bottom-up precipitation dataset (SM2RAIN-ASCAT) over different regions of Iran. Sci. Total Environ., 779(20), 146535. DOI: 10.1016/j.scitotenv.2021.146535.10.1016/j.scitotenv.2021.14653534030270
  28. Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C.T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.H., Malyshev, S., Mcavaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y.C., Taylor, C.M., Verseghy, D., Vasic, R., Xue, Y.K., Yamada, T. & Team G. (2004). Regions of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138–1140. DOI: 10.1126/science.1100217.10.1126/science.110021715326351
  29. Legates, D.R., Mahmood, R., Levia, D.F., Deliberty, T.L., Quiring, S. M., Houser, C. & Nelson F.E. (2011). Soil moisture: A central and unifying theme in physical geography. Progress in Physical Geography, 35, 65–86. DOI: 10.1177/0309133310386514.10.1177/0309133310386514
  30. Liu, W.T. (2002). Progress in scatterometer application. Journal of Oceanography, 58, 121–136. DOI: 10.1023/A:1015832919110.10.1023/A:1015832919110
  31. Matteodo, M., Ammann, K., Verrecchia, E.P. & Vittoz P. (2016). Snowbeds are more affected than other subalpine-alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution, 6, 6969–6982. DOI: 10.1002/ece3.2354.10.1002/ece3.2354551322428725374
  32. Mayaux, P., Bartholome, E., Fritz, S. Belward A. (2004). A new land-cover map of Africa for the year 2000. J. Biogeogr., 31, 861−877. DOI: 10.1111/j.1365-2699.2004.01073.x.10.1111/j.1365-2699.2004.01073.x
  33. Palaj, A & Kollár J. (2019). Changes in snowbed vegetation in the western carpathians under changing climatic conditions and land use in the last decades. Ekológia (Bratislava), 38(4), 318–335. DOI: 10.2478/eko-2019-0024.10.2478/eko-2019-0024
  34. Pan, M. & Wood E.F. (2006). Data assimilati,on for estimating the terrestrial water budget using a constrained ensemble Kalman filter. Journal of Hydrometeorology, 7(3), 534−547. DOI: 10.1175/JHM495.1.10.1175/JHM495.1
  35. Pellarin, T., Ali, A., Chopin, F., Jobard, I. & Bergs J.-C. (2008). Using space-borne surface soil moisture to constrain satellite precipitation estimates over West Africa. Geophysical Research Letters, 35(2), L02813. DOI: 10.1029/2007GL032243.10.1029/2007GL032243
  36. Pellarin, T., Louvet, S., Gruhier, C., Quantin, G. & Legout C. (2013). A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ., 136, 28–36. DOI: 10.1016/j.rse.2013.04.011.10.1016/j.rse.2013.04.011
  37. Pendergrass, A.G. & Knutti R. (2018). The uneven nature of daily precipitation and its change. Geophysical Research Letters, 45(21), 11980–11988. DOI : 10.1029/2018GL080298.10.1029/2018GL080298
  38. Tao, F., Yokozawa, M., Zhang, Z., Xu, Y. & Hayashi Y. (2005). Remote sensing of crop produc-tion in China by production efficiency models: Models comparisons, estimates and uncertain-ties. Ecol. Model., 183, 385−396. DOI: 10.1016/j.ecolmodel.2004.08.023.10.1016/j.ecolmodel.2004.08.023
  39. Taylor, C.M., De Jeu, R.A M., Guichard, F., Harris, P.P. & Dorigo W.A. (2012). Afternoon rain more likely over drier soils. Nature, 489(7416), 423−426. DOI: 10.1038/nature11377.10.1038/nature11377
  40. Thenkabail, P.S., Gamage, M.S.D.N. & Smakhtin V. U. (2004). The use of remote-sensing data for drought assessment and monitoring in Southwest Asia. Research report. Colombo : International Water Management Institute.
  41. Wagner, W., Bartalis, Z., Naeimi, V., Park, S.-E., Figa-Saldana, J. & Bonekamp H. (2010). Status of the METOP ASCAT soil moisture product. In IEEE Geoscience and Remote Sensing (pp. 276−279). Symposium (IGARSS’2010) Honolulu, USA.10.1109/IGARSS.2010.5653358
  42. Wagner, W., Hahn, S., Kidd, R., Melzer, T., Bartalis, Z., Hasenauer, S., Figa-Saldaña, J., de Rosnay, P., Jann, A., Schneider, S., Komma, J., Kubu, G., Brugger, K., Aubrecht, C., Züger, J., Gangkofner, U., Kienberger, S., Brocca, L., Wang, Y., Blöschl, G, Eitzinger, J., Steinnocher, K., Zeil, P. & Rubel F. (2013). The ASCAT Soil Moisture Product: A review of its specifications, validation results, and emerging applications. Meteorologische Zeitschrift, 22(1), 5–33. DOI: 10.1127/0941-2948/2013/0399.10.1127/0941-2948/2013/0399
  43. Wagner, W., Lemoine, G. & Rott H. (1999). A Method for Estimating Soil Moisture from ERS MetOp-A ASCAT and Soil Data. Rem. Sens. Environ., 70(2), 191−207. DOI: 10.1016/S0034-4257(99)00036-X.10.1016/S0034-4257(99)00036-X
  44. Wardlow, B.D., Anderson, M.C. & Verdin J.P. (2012). Remote sensing of drought. Boca Raton: CRC Press. DOI: 10.1201/b11863.10.1201/b11863
  45. Xiao, J. & Zhuang Q. (2007). Drought effects on large fire activity in Canadian and Alaskan forests. Environmental Research Letters, 2(4), 044033. DOI: 10.1088/1748-9326/2/4/044033.
  46. Xin, Q., Gong, P., Yu, C., Yu, L., Broich, M., Suyker, A. & Myneni R.A. (2013). Production Efficiency model-based method for satellite estimates of corn and soybean yields in the Midwestern US. Remote Sensing, 5(11), 5926−5943. DOI: 10.3390/rs5115926.10.3390/rs5115926
  47. Zbiri, A., Hachmi, A., Haesen, D., El Alaoui-Faris, F.E. & Mahyou H. (2019a). Efficiency of climate and remote sensing data to drought monitoring in arid areas: Case of Eastern Morocco. WSEAS Transactions on Environment and Development, 15(42), 378−394.
  48. Zbiri, A., Haesen, D., El Alaoui-Faris, F.E. & Mahyou H. (2019b). Drought monitoring using soil moisture index and normalized difference vegetation index time series in Moroccan rangelands. WSEAS Transactions on Environment and Development, 15(30), 261−278.
  49. Zhang, Z., Wang, D., Wang, G., Qiu, J. & Liao W. (2019). Use of SMAP soil moisture and fitting methods in improving GPM estimation in near real time. Remote Sensing, 11(3), 368. DOI : 10.3390/rs11030368.10.3390/rs11030368
  50. Zheng, X.Y. & El Tahir E.A.B. (1998). A soil moisture rainfall feedback mechanism 2. Numerical experiments. Water Resources Research, 34, 777−785. DOI : 10.1029/97WR03497.
DOI: https://doi.org/10.2478/eko-2022-0010 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 90 - 100
Submitted on: Aug 14, 2021
Accepted on: Dec 20, 2021
Published on: Apr 22, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Asmae Zbiri, Azeddine Hachmi, Dominique Haesen, Fatima Ezzahrae El Alaoui-Faris, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.