Have a personal or library account? Click to login
Soil Fauna of Ranibari Community Forest, Kathmandu, Nepal Cover

Soil Fauna of Ranibari Community Forest, Kathmandu, Nepal

Open Access
|Apr 2022

References

  1. Baretta, D., Brescovit, A. D., Knysak, I. & Cardoso E.J.B.N. (2007). Trap and soil monolith sampled edaphic spiders (Arachnida: Araneae) in Araucaria angustifolia forest. Scientia Agricola, 64(4), 375–383.10.1590/S0103-90162007000400008
  2. Beylich, A., Oberholzer, H.R., Schrader, S., Höper, H. & Wilke B.M. (2010). Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res., 109(2), 133–143. DOI: 10.1016/j. still.2010.05.010.
  3. Brietbart, R. (1988). Soil testing procedures for soil survey: Laboratory procedure manual. Gabrone: Agricultural Information Services, Ministry of Agriculture.
  4. Climate-Data (2021). Kathmandu climate. https://en.climate-data.org/asia/nepal/central-development-region/kathmandu-1137/.
  5. Daily, G.C., Alexander, S., Ehrlich, P.R., Goulder, L., Lubchenco, J., Matson, P.A., Mooney, H.A., Postel, S., Schneider, S.H., Tilman, D. & Woodwell G.M. (1997). Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues in Ecology, 2, 1–16.
  6. Decaëns, T., Jiménez, J.J., Gioia, C., Measey, G.J. & Lavelle P. (2006). The values of soil animals for conservation biology. Eur. J. Soil Biol., 42, 23–38. DOI: 10.1016/j.ejsobi.2006.07.001.10.1016/j.ejsobi.2006.07.001
  7. Frouz, J., Prach, K., Pižl, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balík, V., Kalčík, J. & Řehounková K. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur. J. Soil Biol., 44(1), 109–121. DOI: 10.1016/j. ejsobi.2007.09.002.
  8. Galli, L., Capurro, M., Menta, C. & Rellini I. (2014). Is the QBS-ar index a good tool to detect the soil quality in Mediterranean areas? A cork tree Quercus suber L. (Fagaceae) wood as a case of study. Italian Journal of Zoology, 81(1), 126–135. DOI: 10.1080/11250003.2013.875601.10.1080/11250003.2013.875601
  9. Gerlach, J., Samways, M. & Pryke J. (2013). Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J. Insect Conserv., 17(4), 831–850. DOI: 10.1007/s10841-013-9565-9.10.1007/s10841-013-9565-9
  10. Gonzalez, G. & Seastedt T.R. (2001). Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology, 82(4), 955–964. DOI: 10.1890/0012-9658(2001)082[0955:SFAPLD]2.0.CO;2.
  11. Gupta, S.K. (1985). Plant mites of India. Calcutta: Sri Aurobindo Press.
  12. Haimi, J., Laamanen, J., Penttinen, R., Räty, M., Koponen, S., Kellomäki, S. & Niemelä P. (2005). Impacts of elevated CO2 and temperature on the soil fauna of boreal forests. Appl. Soil Ecol., 30(2), 104–112. DOI: 10.1016/j. apsoil.2005.02.006.
  13. Johnson, N.F., & Triplehorn C.A. (2005). Borror and DeLong‘s introduction to the study of insects. Cole Belmont: Thompson Brooks.
  14. Julka, J.M. (1988). Fauna of India: Megadrile Oligochaeta (earthworms). Calcutta: Doon Phototype Printers.
  15. Kautz, T., López-Fando, C. & Ellmer F. (2006). Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Appl. Soil Ecol., 33(3), 278–285. DOI: 10.1016/j.apsoil.2005.10.003.10.1016/j.apsoil.2005.10.003
  16. Koehler, H.H. (1992). The use of soil mesofauna for the judgement of chemical impact on ecosystems. Agric. Ecosyst. Environ., 40, 193–205. DOI: 10.1016/0167-8809(92)90092-P.10.1016/0167-8809(92)90092-P
  17. Kooch, Y. & Noghre N. (2020). The effect of shrubland and grassland vegetation types on soil fauna and flora activities in a mountainous semi-arid landscape of Iran. Sci. Total Environ., 703. DOI: 10.1016/j.scitotenv.2019.135497.10.1016/j.scitotenv.2019.135497
  18. Korboulewsky, N., Perez, G. & Chauvat M. (2016). How tree diversity affects soil fauna diversity: a review. Soil Biol. Biochem., 94, 94–106. DOI: 10.1016/j.soilbio.2015.11.024.10.1016/j.soilbio.2015.11.024
  19. Lavelle, P. (1996). Diversity of soil fauna and ecosystem function. Biology International, 33, 3–16.
  20. Lavelle, P. (1997). Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Adv. Ecol. Res., 27, 93–132. DOI: 10.1016/S0065-2504(08)60007-0.10.1016/S0065-2504(08)60007-0
  21. Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P. & Rossi P.-J. (2006). Soil invertebrates and ecosystem services. Eur. J. Soil Biol., 42, 3–15. DOI: 10.1016/j.ejsobi.2006.10.002.10.1016/j.ejsobi.2006.10.002
  22. Lindberg, N. (2003). Soil fauna and global change- responses to experimental drought, irrigation, fertilization and soil warming. Ph.D. thesis, Swedish University of Agricultural Science, Uppsala, Sweden.
  23. Liu, Y., Wang, L., He, R., Chen, Y., Xu, Z., Tan, B., Zhang, L., Xiao, J., Zhu, P., Chen L., Guo, L. & Zhang J. (2019). Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep., 9(1). DOI: 10.1038/s41598-019-47072-0.10.1038/s41598-019-47072-0664665731332217
  24. Lubbers, I.M., Berg, M.P., De Deyn, G.B., Putten, W.H. & Groenigen J.W. (2020). Soil fauna diversity increases CO2 but suppresses N2O emissions from soil. Global Change Biology, 26(3), 1886–1898. DOI: 10.1111/gcb.14860.10.1111/gcb.14860707887831587448
  25. Madej, G., Barczyk, G. & Gdawiec M. (2011). Evaluation of soil biological quality index (QBS-ar): Its sensitivity and usefulness in the post-mining chronosequence-preliminary research. Pol. J. Environ. Stud., 20(5), 1367–1372.
  26. Menta, C. (2012). Soil fauna diversity - function, soil degradation, biological indices, soil restoration. In G.A. Lameed (Ed.), Biodiversity conservation and utilizationn in a diverse world (pp. 59–94). IntechOpen.10.5772/51091
  27. Menta, C., Conti, F.D., Pinto, S. & Bodini A. (2018). Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators, 85, 773–780. DOI: 10.1016/j.ecolind.2017.11.030.10.1016/j.ecolind.2017.11.030
  28. Menta, C. & Remelli S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11(1), 54. DOI: 10.3390/insects11010054.10.3390/insects11010054702245131963103
  29. Mitra, S.C., Dey, A. & Ramakrishna (2004). Pictorial handbook- Indian land snails (selected species). Kolkata: Calcutta Repro Graphics.
  30. Mulder, C. & Elser J.J. (2009). Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Global Change Biology, 15, 2730–2738. DOI: 10.1111/j.1365-2486.2009.01899.x.10.1111/j.1365-2486.2009.01899.x
  31. Nawaz, M., Bourrié, G. & Trolard F. (2012). Soil compaction impact and modelling: A review. Agronomy for Sustainable Development, 33(2), 291–309. DOI: 10.1007/s13593-011-0071-8.10.1007/s13593-011-0071-8
  32. Parisi, V., Menta, C., Gardi, C. & Jacomini C. (2003). Evaluation of soil quality and biodiversity in Italy: The biological quality of soil index (QBS) approach. In Paper presented at the Proceedings of OECD expert meeting on ‘Agricultural impacts on soil erosion and soil biodiversity: Developing indicators for policy analysis’. Rome.
  33. Parisi, V., Menta, C., Gardi, C., Jacomini, C. & Mozzanica E. (2005). Micro-arthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric. Ecosyst. Environ., 105(1–2), 323–333. DOI: 10.1016/j.agee.2004.02.002.10.1016/j.agee.2004.02.002
  34. Pereira, J.M., Segat, J.C., Baretta, D., Vasconcellos, R.L.F., Baretta, C.R.D.M. & Cardoso E.J.B.N. (2017). Soil macrofauna as a soil quality indicator in native and replanted Araucaria angustifolia forests. Revista Brasileira de Ciência do Solo, 41. DOI: 10.1590/18069657rbcs20160261.10.1590/18069657rbcs20160261
  35. Qian, H. & Ricklefs R.E. (2008). Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecol. Lett., 11(6), 547–553. DOI: 10.1111/j.1461-0248.2008.01168.x.10.1111/j.1461-0248.2008.01168.x18318717
  36. Reynolds, S.G. (1970). The gravimetric method of soil moisture determination. J. Hydrol., 11, 258–273. DOI: 10.1016/0022-1694(70)90066-1.10.1016/0022-1694(70)90066-1
  37. Salmon, S., Artuso, N., Frizzera, L. & Zampedri R. (2008). Relationships between soil fauna communities and humus forms: response to forest dynamics and solar radiation. Soil Biol. Biochem., 40(7), 1707–1715. DOI: 10.1016/j.soilbio.2008.02.007.10.1016/j.soilbio.2008.02.007
  38. Santos, M.A.B., Oliveira Filho, L.C.I., Pompeo, P.N., Ortiz, D.C., Mafra, Á.L., Klauberg Filho, O. & Baretta D. (2018). Morphological diversity of springtails in land use systems. Revista Brasileira de Ciência do Solo, 42. DOI: 10.1590/18069657rbcs20170277.10.1590/18069657rbcs20170277
  39. Seitz, S., Goebes, P., Zumstein, P., Assmann, T., Kühn, P., Niklaus, P.A., Schuldt, A. & Scholten T. (2015). The influence of leaf litter diversity and soil fauna on initial soil erosion in subtropical forests. Earth Surface Processes and Landforms, 40(11), 1439–1447. DOI: 10.1002/esp.3726.10.1002/esp.3726
  40. Su, J.C., Debinski, D.M., Jakubauskas, M.E. & Kindscher K. (2004). Beyond species richness: Community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conserv. Biol., 18(1), 167–173. DOI: 10.1111/j.1523-1739.2004.00337.x.10.1111/j.1523-1739.2004.00337.x
  41. Szlavecz, K., Vilisics, F., Toth, Z. & Hornung E. (2018). Terrestrial isopods in urban environments: An overview. Zookeys, 801, 97–126. DOI: 10.3897/zookeys.801.29580.10.3897/zookeys.801.29580628825730564033
  42. Tan, X., Chang, S.X. & Kabzems R. (2005). Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. For. Ecol. Manag., 217(2–3), 158–170. DOI: 10.1016/j.foreco.2005.05.061.10.1016/j.foreco.2005.05.061
  43. Tan, X., Chang, S.X. & Kabzems R. (2007). Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol. Fertil. Soils, 44(3), 471–479. DOI: 10.1007/s00374-007-0229-3.10.1007/s00374-007-0229-3
  44. Tikader, B.K. (1987). Handbook Indian spiders. Calcutta: Navana Printing Works. Uhey, D.A., Riskas, H.L., Smith, A.D. & Hofstetter R.W. (2020). Ground-dwelling arthropods of pinyon-juniper woodlands: Arthropod community patterns are driven by climate and overall plant productivity, not host tree species. PLoS One, 15(8). DOI: 10.1371/journal. pone.0238219.
  45. Wang, S., Tan, Y., Fan, H., Ruan, H. & Zheng A. (2015). Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China. Appl. Soil Ecol., 89, 69–75. DOI: 10.1016/j.apsoil.2015.01.004.10.1016/j.apsoil.2015.01.004
  46. Ward, D.F. & Larivière M.C. (2004). Terrestrial invertebrate surveys and rapid biodiversity assessment in New Zealand: lessons from Australia. N. Z. J. Ecol., 28(1), 151–159.
  47. Wolters, V., Bengtsson, J. & Zaitsev A.S. (2006). Relationship among the species richness of different taxa. Ecology, 87(8), 1886–1895. DOI: 10.1890/0012-9658(2006)87[1886:RATSRO]2.0.CO;2.
  48. Yang, Y., Wu, Q., Yang, W., Wu, F., Zhang, L., Xu, Z., Liu, Y., Tan, B., Li, H. & Zhou W. (2020). Temperature and soil nutrients drive the spatial distributions of soil macroinvertebrates on the eastern Tibetan plateau. Ecosphere, 11(3), e03075. DOI: 10.1002/ecs2.3075.10.1002/ecs2.3075
  49. Yin, X., Ma, C., He, H., Wang, Z., Li, X., Fu, G., Liu, Y. & Zheng Y. (2018). Distribution and diversity patterns of soil fauna in different salinization habitats of Songnen grasslands, China. Appl. Soil Ecol., 123, 375–383. DOI: 10.1016/j.apsoil.2017.09.034.10.1016/j.apsoil.2017.09.034
  50. Yorkina, N., Zhukov, O. & Chromysheva O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38(1), 1–10. DOI: 10.2478/eko-2019-0001.10.2478/eko-2019-0001
  51. Zagatto, M.R.G., Filho, L.C.O., Pompeo, P.N., Niva, C.C., Baretta, D. & Cardoso E.J.B.N. (2020). Mesofauna and macrofauna in soil and litter of mixed plantations. In E.J.B.N. Cardoso (Ed.), Mixed plantations of Eucalyptus and leguminous trees (pp. 155–172). Switzerland: Springer Nature.
  52. Zagatto, M.R.G., Niva, C.C., Thomazini, M.J., Baretta, D., Santos, A., Nadolny, H., Cardoso, G.B.X. & Brown G.G. (2017). Soil invertebrates in different land-use systems: How integrated production systems and seasonality affect soil mesofauna communities. Journal of Agricultural Science and Technology B, 7(3). 158–169. DOI: 10.17265/2161-6264/2017.03.003.10.17265/2161-6264/2017.03.003
  53. Zagatto, M.R.G., Pereira, A.P.A., De Souza, A.J., Pereira, R.F., Baldesin, L.F., Pereira, C.M., Luis, F., Pereira, C.M. & Lopes R.V. (2019a). Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. For. Ecol. Manag., 433, 240-247. DOI: 10.1016/j.foreco.2018.11.008.10.1016/j.foreco.2018.11.008
  54. Zagatto, M.R.G., Zan–o Júnior, L.A., Pereira, A.P.A., Estrada-Bonilla, G. & Cardoso E.J.B.N. (2019b). Soil mesofauna in consolidated land use systems: how management affects soil and litter invertebrates. Scientia Agricola, 76(2), 165–171. DOI: 10.1590/1678-992x-2017-0139.10.1590/1678-992x-2017-0139
  55. Zhu, X., Gao, B., Yuan, S. & Hu Y. (2010). Community structure and seasonal variation of soil arthropods in the forest-steppe ecotone of the mountainous region in Northern Hebei, China. Journal of Mountain Science, 7(2), 187–196. DOI: 10.1007/s11629-010-0198-0.10.1007/s11629-010-0198-0
  56. Zhu, X., Hu, Y. & Gao B. (2011). Influence of environment of forest-steppe ecotone on soil arthropods community in Northern Hebei, China. Procedia Environmental Sciences, 10, 1862–1867. DOI: 10.1016/j. proenv.2011.09.291.
  57. Zhukov, O., Kunah, O., Dubinina, Y. & Novikova V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(4), 301–327. DOI: 10.2478/eko-2018-0023.10.2478/eko-2018-0023
DOI: https://doi.org/10.2478/eko-2022-0003 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 17 - 25
Submitted on: Mar 23, 2021
Accepted on: Sep 2, 2021
Published on: Apr 22, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Pratistha Shrestha, Prem Bahadur Budha, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.