Have a personal or library account? Click to login
Spiders (Araneae) as a component of ground-dwelling animal assemblages of the energy crop fields in northern Bukovyna (Ukraine) Cover

Spiders (Araneae) as a component of ground-dwelling animal assemblages of the energy crop fields in northern Bukovyna (Ukraine)

Open Access
|Oct 2021

References

  1. Benhadi-Marín, J., Pereira, J.A., Bento, A., Sousa, J.P. & Santos S.A.P. (2016). Biodiversity of spiders in agroecosystems: community structure, conservation and roles as biological control agents. In S.A.P. Santos (Ed.), Natural enemies: Identification, protection strategies and ecological im pacts (pp. 43–110). Hauppauge: Nova Science Publishers.
  2. Blaum, N., Seymour, C., Rossmanith, E., Schwager, M. & Jeltsch F. (2009). Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodiv ers. Conserv., 18(5), 1187–1199. DOI: 10.1007/s10531-008-9498-x.10.1007/s10531-008-9498-x
  3. Cole, L.J., McCracken, D.I., Downie, I.S., Dennis, P., Foster, G.N., Waterhouse, A., Murphy, K.J., Griffin, A.L. & Kennedy M.P. (2005). Comparing the effects of farming practices on ground beetle (Coleoptera: Carabidae) and spider (Araneae) assemblages of Scottish farmland. Biodivers. Conserv., 14(2), 441–460. DOI: 10.1007/s10531-004-6404-z.10.1007/s10531-004-6404-z
  4. Cook, J.H., Beyea, J. & Keeler K.H. (1991). Potential impacts of biomass production in the United States on biological diversity. Annual Review of Energy and the Environment, 16, 401‒431. DOI: 10.1146/annurev. eg.16.110191.002153.10.1146/annurev.eg.16.110191.002153
  5. Dauber, J., Cass, S., Gabriel, D., Harte, K., Åström, S., O’Rourke, E. & Stout J.С. (2015). Yield-biodiversity trade-off in patchy fields of Miscanthus × giganteus. Global Change Biology Bioenergy, 7, 455–467. DOI: 10.1111/ gcbb.12167.10.1111/gcbb.12167
  6. Dauber, J., Jones, M.B., & Stout J.C. (2010). The impact of biomass crop cultivation on temperate biodiversity. Global Change Biology Bioenergy, 2(6), 289–309. DOI: 10.1111/j.1757-1707.2010.01058.x.10.1111/j.1757-1707.2010.01058.x
  7. Eggers, J., Tröltzsch, K., Falcucci, A., Maiorano, L., Verburg, P.H., Framstad, E., Louette, G., Maes, D., Nagy, Sz., Ozinga, W. & Delbaere B. (2009). Is biofuel policy harming biodiversity in Europe? Global Change Biology Bioenergy, 1(1), 18‒34. DOI: 10.1111/j.1757-1707.2009.01002.x.10.1111/j.1757-1707.2009.01002.x
  8. Energy Strategy of Ukraine until 2035 (2017). Security, energy efficiency, com petitiveness. The order of Cabinet of Ministers dated. https://www.kmu.gov.ua/en/news/250210653
  9. Groom, M.J., Gray, E.M. & Townsend P.A. (2008). Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv. Biol., 22(3), 602‒609. DOI: 10.1111/j.1523-1739.2007.00879.x.10.1111/j.1523-1739.2007.00879.x
  10. Hammer, Ø., Harper, D.A.T. & Ryan P.D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontology Electronic, 4(1), 1−9. https://palaeo-electronica.org/2001_1/past/past.pdf
  11. Holguin, C.M., Reay-Jones, F.P.F., Frederick, J.R., Adler, P.H., Chong, J.H. & Savereno A. (2010). Insect diversity in switchgrass grown for bio-fuel in South Carolina. J. Agric. Urban Entomol., 27(1), 1‒19. DOI: 10.3954/1523-5475-27.1.1.10.3954/1523-5475-27.1.1
  12. Jodl, S., Eppel-Hotz, A. & Kuhn W. (2004). Miscanthus als nachwachsender Rohstoff. Veitshöchheimer Berichte, 77, 1–34.
  13. Jost, L., Chao, A. & Chazdon R.L. (2011). Compositional similarity and β (beta) diversity. In A.E. Magurran & B.J. Mc Gill (Eds.), Biological di versity: frontiers in measurement and assessment ( pp. 66–84). Oxford: Oxford University Press.
  14. Lewandowski, I., Scurlock, J.M., Lindvall, E. & Christou M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy, 25(4), 335‒361. DOI: 10.1016/S0961-9534(03)00030-8.10.1016/S0961-9534(03)00030-8
  15. Magurran, A. (1991). Ecological diversity and its measurements. London: Chapman and Hall.
  16. Maloney, D., Drummond, F.A. & Alford R. (2003). Spider predation in agroecosystems: can spiders effectively control pest population? MAFES Technical Bulletin, 190, 1‒32.
  17. Michalko, R., Pekar, S. & Entling M.H. (2019). An updated perspective on spiders as generalist predators in biological control. Oecologia, 189(1), 21‒36. DOI: 10.1007/s00442-018-4313-1.10.1007/s00442-018-4313-130535723
  18. National Atlas of Ukraine (2007). Kyiv.
  19. Öberg, S., Mayr, S. & Dauber J. (2008). Landscape effects on recolonisation patterns of spiders in arable fields. Agric. Ecosyst. Environ., 123(1‒3), 211‒218. DOI: 10.1016/j.agee.2007.06.005.10.1016/j.agee.2007.06.005
  20. Pesenko, Y.A. (1982). Principles and methods of quantitative analysis in faunistic researches (in Russian). Moscow: Nauka.
  21. Platen, R., Konrad, J. & Glemnitz M. (2017). Novel energy crops: an opportunity to enhance the biodiversity of arthropod assemblages in biomass feedstock cultures? International Journal of Biodiver sity Science, Ecosystem Services & Management, 13(1), 162‒171. DOI: 10.1080/21513732.2017.1289244.10.1080/21513732.2017.1289244
  22. Polchaninova, N., Savchenko, G., Ronkin, V., Drogvalenko, A. & Putchkov A. (2019). Summer fire in steppe habitats: a long-term effect on vegetation and autumnal assemblages of cursorial arthropods. Hacquetia, 18(2), 213‒231. DOI: 10.2478/hacq-2019-0006.10.2478/hacq-2019-0006
  23. Polchaninova N., Tsurikov, M. & Atemasov A. (2016). Effect of summer fire on cursorial spider (Aranei) and beetle (Coleoptera) assemblages in meadow steppes of Central European Russia. Hacquetia, 15(2), 113–132. DOI: 10.1515/hacq-2016-0019.10.1515/hacq-2016-0019
  24. Prokopenko, E.V. & Savchenko E.Y. (2013). Spiders (Aranei) of agrocoenoses of the Donetsk Region (in Russian). Probl. Ekol. i Okhrany Prirody Tekh nogennogo Reg. Mezhvedomstv. sb. Nauchn. Rabot., 1, 122–133.
  25. Sabluk, V.T., Gryshchenko, O.M., Smirnykh, V.M., Pedos, V.P. & Suslyk L.O. (2018). Do pests impose a danger to bioenergy crops? (in Ukrainian). Bioenergy, 1, 37‒40.
  26. Schaeffer, S., Baxendale, F., Heng-Moss, T., Sitz, R., Sarath, G., Mitchell, R. & Shearman R. (2011). Characterization of the Arthropod Community Associated with Switchgrass (Poales: Poaceae) in Nebraska. J. Kans. En tomol. Soc., 84(2), 87‒104. DOI: 10.2317/JKES100329.1.10.2317/JKES100329.1
  27. Semere, T. & Slate F.M. (2007) Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy, 31, 20‒29. DOI: 10.1016/j.biombioe.2006.07.001.10.1016/j.biombioe.2006.07.001
  28. Seyfulina, R.R. (2005). Epigeic spiders (Arachnida, Aranei) in agroecosystems of Moscow region (species composition, spatial distribution, and seasonal dynamics) (in Russian). Russian Journal of Zoology, 84(3), 330‒346.
  29. Seyfulina, R.R. (2010). The spider assemblage (Arachnida, Aranei) in agroeco-systems of the Kuban Plain: Species composition, spatial distribution, and seasonal dynamics (in Russian). Russian Journal of Zoology, 89(2), 151‒166.
  30. Snelick, T.L. (2018). Arthropod Abundance and Diversity in Miscanthus x giganteus, Panicum virgatum, and Other Habitat Types in Southeastern Ohio. Doctoral dissertation, Ohio University.
  31. Stefanovska, Ò.R., Lewis, E.E., Likar, Ya.O., Rakhmetov, D.B. & Pidlisnyuk V.V. (2011). Herbivorous pests of Miscanthus giganteus. Studying of its potential impact to agrocenosis for second generation biofuel production (in Ukrainian). Karantin i Zahist Roslin, 5, 6‒8.
  32. Stefanovska, T.R., Kucherovs’ka, S.V. & Pidlisniuk V.V. (2012). Agro-ecological risk assessment of cultivation of swissgrass considering the impact of harmful organisms (in Ukrainian). Agroecological Journal, 3, 125‒127.
  33. Stöcker, G. & Bergmann A. (1977). Ein Modell der Dominanzstruktur und seine nwendung. Archiv für Naturschutz und Landschaftforschung, 17, 1–26.
  34. Webb, A. & Coates D. (2012). Biofuels and biodiversity. Montreal: Secretariat of the Convention on Biological Diversity.
  35. Williams, M.A. & Feest A. (2019). The effect of Miscanthus cultivation on the biodiversity of ground beetles (Coleoptera: Carabidae), spiders and harvestmen (Arachnida: Araneae and Opiliones). Agric. Sci., 10, 903‒917. DOI: 10.4236/as.2019.107069.10.4236/as.2019.107069
  36. WWF Living Planet Report (2016). Risk and resilience in a new era. http://awsassets.panda.org/downloads/lpr_living_planet_report_2016.pdf
  37. Zhukov, O., Kunah, O.M., Dubinina, Y. & Novikova V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrage. Ekológia (Bratislava), 37(4), 301–327. DOI: 10.2478/eko-2018-0023.10.2478/eko-2018-0023
  38. Zhuravel, M.Y., Lezhenina, I.P., Polchaninova, N.Y. & Yaremenko V.V. (2012). The use of ground-dwelling arthropods for the monitoring of soil reclamation in oil and gas fields (in Ukrainian). The Kharkov Entomological Society Gazette, 20(4), 5–14.
DOI: https://doi.org/10.2478/eko-2021-0026 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 240 - 247
Submitted on: May 1, 2020
|
Accepted on: Nov 8, 2020
|
Published on: Oct 22, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Kateryna Tymchuk, Nina Polchaninova, Alina Zhuk, Uliana Leheta, Volodymyr Voloshyn, Mariia Fedorіak, published by Slovak Academy of Sciences, Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.