Have a personal or library account? Click to login
Temporal Aspect of the Terrestrial Invertebrate Response to Moisture Dynamic in Technosols formed after Reclamation at a Post-Mining Site in Ukrainian Steppe Drylands Cover

Temporal Aspect of the Terrestrial Invertebrate Response to Moisture Dynamic in Technosols formed after Reclamation at a Post-Mining Site in Ukrainian Steppe Drylands

Open Access
|Jul 2021

References

  1. Angeler, D.G., Drakare, S. & Johnson R.K. (2011). Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecology and Society, 16(3), 5. https://www.jstor.org/stable/26268950.10.5751/ES-04175-160305
  2. Bertness, M. & Callaway R.M. (1994). Positive interactions in communities. Trends Ecol. Evol., 9(5), 191–193. DOI: 10.1016/0169-5347(94)90088-4.10.1016/0169-5347(94)90088-4
  3. Borcard, D. & Legendre P. (2002). All–scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model., 153, 51–68. DOI: 10.1016/S0304-3800(01)00501-4.10.1016/S0304-3800(01)00501-4
  4. Bowker, M.A., Soliveres, S. & Maestre F.T. (2010). Competition increases with abiotic stress and regulates the diversity of biological soil crusts. J. Ecol., 98(3), 551–560. DOI: 10.1111/j.1365-2745.2010.01647.x.10.1111/j.1365-2745.2010.01647.x
  5. Brandle, M., Durka, W., Krug, H. & Brandl R. (2003). The assembly of local communities: plants and birds in non-reclaimed mining sites. Ecography, 26, 652−660. DOI: 10.1034/j.1600-0587.2003.03513.x.10.1034/j.1600-0587.2003.03513.x
  6. Brown, J.H. (1984). On the relationship between abundance and distribution of species. Am. Nat., 124, 255–279. DOI: 10.1086/284267.10.1086/284267
  7. Brown, J.H. (1999). Macroecology: progress and prospect. Oikos, 87, 3–14. DOI: 10.2307/3546991.10.2307/3546991
  8. Buchori, D., Rizali, A., Rahayu, G.A. & Mansur I. (2018). Insect diversity in post-mining areas: Investigating their potential role as bioindicator of reclamation success. Biodiversitas, 19, 1696–1702. DOI: 10.13057/biodiv/d190515.10.13057/biodiv/d190515
  9. Chang, L.-W., Zelený, D., Li, C.-F., Chiu, S.-T. & Hsieh C.-F. (2013). Better environmental data may reverse conclusions about niche-and dispersal-based processes in community assembly. Ecology, 94, 2145–2151. DOI: 10.1890/12-2053.1.10.1890/12-2053.124358699
  10. Chase, J.M., Leibold, M.A., Downing, A.L. & Shurin J.B. (2000). The effects of productivity, herbivory, and plant species turnover in grassland food webs. Ecology, 81(9), 2485–2497. DOI: 10.1890/0012-9658(2000)081[2485:TEOPHA]2.0.CO;2.
  11. Chase, J.M. & Myers J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. B Biol. Sci., 366, 2351–2363. DOI: 10.1098/rstb.2011.0063.10.1098/rstb.2011.0063313043321768151
  12. Collins, S.L., Belnap, J., Grimm, N.B., Rudgers, J.A., Dahm, C.N., D’Odorico, P., Litvak, M., Natvig, D.O., Peters, D.C., Pockman, W.T., Sinsabaugh, R.L. & Wolf B.O. (2014). A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annual Review of Ecology, Evolution, and Systematics, 45, 397–419. DOI: 10.1146/annurev-ecolsys-120213-091650.10.1146/annurev-ecolsys-120213-091650
  13. Colwell, R.K. & Futuyma D.J. (1971). Measurement of niche breadth and overlap. Ecology, 52, 567–576. DOI: 10.2307/1934144.10.2307/193414428973805
  14. Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett., 8, 1175–1182. DOI: 10.1111/j.1461-0248.2005.00820.x.10.1111/j.1461-0248.2005.00820.x21352441
  15. Curtis, J.T. & McIntosh R.P. (1951). An Upland Forest Continuum in the Prairie-Forest Border Region of Wisconsin. Ecology, 32, 476–496. DOI: 10.2307/1931725.10.2307/1931725
  16. David, J.F. & Handa I.T. (2010). The ecology of saprophagus macroarthro-pods (millipedes, woodlice) in the context of global change. Biol. Rev., 85(4), 881−895. DOI: 10.1111/j.1469-185X.2010.00138.x.10.1111/j.1469-185X.2010.00138.x20412191
  17. Desender, K., Ervinck, A. & Tack G. (1999). Beetle diversity and historical ecology of woodlands in Flanders. Belg. J. Zool., 129(1), 139–155.
  18. Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S., & Mouquet N. (2010). Defining and measuring ecological specialization. J. Appl. Ecol., 47, 15–25. DOI: 10.1111/j.1365-2664.2009.01744.x.10.1111/j.1365-2664.2009.01744.x
  19. Dray, S., Legendre, P. & Peres-Neto P. (2006). Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbours matrices (PCNM). Ecol. Model., 196, 483−493. DOI: 10.1016/j.ecolmodel.2006.02.015.10.1016/j.ecolmodel.2006.02.015
  20. Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P.R., Bellier, E., Bivand, R., Blanchet, F.G., De Cáceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., Munoz, F., Oksanen, J., Thioulouse, J. & Wagner H.H. (2012). Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr., 82, 257–275. DOI: 10.1890/11-1183.1.10.1890/11-1183.1
  21. Dvorský, M., Macek, M., Kopecký, M., Wild, J. & Doležal J. (2017). Niche asymmetry of vascular plants increases with elevation. J. Biogeogr., 44(6), 1418–1425. DOI: 10.1111/jbi.13001.10.1111/jbi.13001
  22. Entling, W., Schmidt, M.H., Bacher, S., Brandl, R. & Nentwig W. (2007). Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr., 16, 440–448. DOI: 10.1111/j.1466-8238.2006.00305.x.10.1111/j.1466-8238.2006.00305.x
  23. Gaston, K.J., Blackburn, T.M. & Lawton J.H. (1997). Interspecific abundance-range size relationships: an appraisal of mechanisms. J. Anim. Ecol., 66(44), 579–601. DOI: 10.2307/5951.10.2307/5951
  24. Gauch, H.G. & Whittaker R.H. (1972). Coenocline simulation. Ecology, 53(3), 446–451. DOI: 10.2307/1934231.10.2307/1934231
  25. Ge, B., Daizhen, Z., Jun, C., Huabin, Z., Chunlin, Z. & Boping T. (2014). Biodiversity variations of soil macrofauna communitiesin forestsina reclaimed coastwith different diked history. Pak. J. Zool., 46(4), 1053–1059.
  26. Gregory, R.D. & Gaston K.J. (2000). Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos, 88, 515–526. DOI: 10.1034/j.1600-0706.2000.880307.x.10.1034/j.1600-0706.2000.880307.x
  27. Hendrychova, M. (2008). Reclamation success in post-mining landscapes in the Czech Republic: a review of pedological and biological studies. Journal of Landscape Studies, 1, 63–78.
  28. Hendrychova, M., Salek, M., Tajovsky, K. & Reho M. (2011). Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restor. Ecol., 20 (5), 561–567. DOI: 10.1111/j.1526-100X.2011.00841.x.10.1111/j.1526-100X.2011.00841.x
  29. Hildmann, E. & Wunsche M. (1996). Lignite mining and its after-effects on the central German landscape. Water Air Soil Pollut., (91), 79–87. DOI: 10.1007/BF00280924.10.1007/BF00280924
  30. Hill, M.O. (1973). Reciprocal averaging: an eigenvector method of ordination. J. Ecol., 61(1), 237–249. DOI: 10.2307/2258931.10.2307/2258931
  31. Hodecek, J., Kuras, T., Sipos, J. & Dolny A. (2015). Post-industrial areas as successional habitats: long-term changes of functional diversity in beetle communities. Basic and Applied Ecology, 16(7), 629–640. DOI: 10.1016/j. baae.2015.06.004.
  32. Hodecek, J., Kuras, T., Sipos, J. & Dolny A. (2016). Role of reclamation in the formation of functional structure of beetle communities: A different approach to restoration. Ecological Engineering, 94, 537−544. DOI: 10.1016/j.ecoleng.2016.06.027.10.1016/j.ecoleng.2016.06.027
  33. Huisman, J., Olff, H. & Fresco L.F.M. (1993). A hierarchical set of models for species response analysis. J. Veg. Sci., 4(1), 37–46. DOI: 10.2307/3235732.10.2307/3235732
  34. Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbour Symp. Quant. Biol., 22, 415–427. DOI: 10.1101/SQB.1957.022.01.039.10.1101/SQB.1957.022.01.039
  35. Inbar, M., Doostdar, H. & Mayer R.T. (2001). Suitability of stressed and vigorous plants to various insect herbivores. Oikos, 94(2), 228–235. DOI: 10.1034/j.1600-0706.2001.940203.x.10.1034/j.1600-0706.2001.940203.x
  36. Izakovičová, Z., Miklós, L., Miklósová, V. & Raniak A. (2020). Integrated approach to the management of the landscape for the implementation of the Danube Strategy. Ekológia (Bratislava), 39(4), 357−379. DOI: 10.2478/eko-2020-0029.10.2478/eko-2020-0029
  37. Jamil, T. & ter Braak C.J.F. (2013). Generalized linear mixed models can detect unimodal species-environment relationships. PeerJ, 1:e95. DOI: 10.7717/peerj.95.10.7717/peerj.95
  38. Jansen, F. & Oksanen J. (2013). How to model species responses along ecological gradients – Huisman–Olff–Fresco models revisited. J. Veg. Sci., 24, 1108–1117. DOI: 10.1111/jvs.12050.10.1111/jvs.12050
  39. Klimkina, I., Kharytonov, M. & Zhukov O. (2018). Trend analysis of water-soluble salts vertical migration in technogenic edaphotops of reclaimed mine dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management, 74(2), 82–93. DOI: 10.5755/j01. erem.74.2.19940.
  40. Knapp, M., Seidl, M., Knappová, J., Macek, M. & Saska P. (2019). Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Scientific Reports, 9(1), 8967. DOI: 10.1038/s41598-019-45378-7.10.1038/s41598-019-45378-7
  41. Kohn, A.J. (1968). Microhabitats, abundance, and food of Conus in the Maldive and Chagos Islands. Ecology, 49, 1046–1061. DOI: 10.2307/1934489.10.2307/1934489
  42. Kunah, O.M., Zelenko, Y.V., Fedushko, M.P., Babchenko, A.V., Sirovatko, V.O. & Zhukov O.V. (2019). The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 27(2), 156–162. DOI: 10.15421/011921.10.15421/011921
  43. Kunakh, O.N., Kramarenko, S.S., Zhukov, A.V., Zadorozhnaya, G.A. & Kramarenko A.S. (2018). Intra-population spatial structure of the land snail Vallonia pulchella (Müller, 1774) (Gastropoda; Pulmonata; Valloniidae). Ruthenica, 28 (3), 91–99.10.35885/ruthenica.2018.28(3).1
  44. Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O.W. & Dhillion S. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Science, 33, 159−193.
  45. Lawton, J.H. (1999). Are there general laws in ecology? Oikos, 84, 177–192. DOI: 10.2307/3546712.10.2307/3546712
  46. Legendre, P. & Birks H.J.B. (2012). From classical to canonical ordination. In H.J.B. Birks, A.F. Lotter, S. Juggins & J.P. Smol (Eds.), Tracking environmental change using lake sediments: Data handling and numerical techniques (pp. 201–248). Dordrecht: Springer.
  47. Madej, G. & Kozub M. (2014). Possibilities of using soil microarthropods, with emphasis on mites (Arachnida, Acari, Mesostigmata), in assessment of successional stages in a reclaimed coal mine dump (Pszów, S Poland). Biological Letters, 51(1), 19–36. DOI: 10.1515/biolet-2015-0003.10.1515/biolet-2015-0003
  48. Maraun, M., Martens, H., Migge, S., Theenhaus, A. & Scheu S. (2003). Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur. J. Soil Biol., 39, 85–95. DOI: 10.1016/S1164-5563(03)00006-2.10.1016/S1164-5563(03)00006-2
  49. Michaelis, J. & Diekmann M.R. (2017). Biased niches – Species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS ONE, 12(8), e0183152. DOI: 10.1371/journal.pone.0183152.10.1371/journal.pone.0183152556518428827833
  50. Minchin, P.R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69(1–3), 89–107. DOI: 10.1007/BF00038690.10.1007/BF00038690
  51. Morón-Ríos, A., Rodríguez, M.Á., Pérez-Camacho, L. & Rebollo S. (2010). Effects of seasonal grazing and precipitation regime on the soil macroin-vertebrates of a Mediterranean old-field. Eur. J. Soil Biol., 46(2), 91–96. DOI: 10.1016/j.ejsobi.2009.12.008.10.1016/j.ejsobi.2009.12.008
  52. Okie, J.G., Van Horn, D.J., Storch, D., Barrett, J.E., Gooseff, M.N., Kopsova, L. & Takacs-Vesbach C.D. (2015). Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci., 282, 20142630. DOI: 10.1098/rspb.2014.2630.10.1098/rspb.2014.2630459043226019154
  53. Paoletti, M.G., Osler, G.H.R., Kinnear, A., Black, D.J., Thomson, L.J., Tsitsilas, A., Sharley, D., Judd, S., Neville, P. & D,inca A. (2007). Detritivores as indicators of landscape stress and soil degradation. Austr. J. Exp. Agric., 47(4), 412−423. DOI: 10.1071/EA05297.10.1071/EA05297
  54. Pontegnie, M., du Bus de Warnaffe, G. & Lebruna Ph. (2005). Impacts of silvi-cultural practices on the structure of hemi-edaphic macrofauna community. Pedobiologia, 49(3), 199–210. DOI: 10.1016/j.pedobi.2004.09.005.10.1016/j.pedobi.2004.09.005
  55. Price, P.W. (1991). The plant vigor hypothesis and herbivore attack. Oikos, 62 (2), 244–251. DOI: 10.2307/3545270.10.2307/3545270
  56. Purse, B.V., Gregory, S.J., Harding, P. & Roy H.E. (2012). Habitat use governs distribution patterns of saprophagous (litter-transforming) macroarthropods – a case study of British woodlice (Isopoda: Oniscidea). Eur. J. Entomol., 109, 543–552. DOI: 10.14411/eje.2012.068.10.14411/eje.2012.068
  57. R Core Team (2019). A language and environment for statistical computing. In R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.R-project.org
  58. Rehor, M., Lang, T. & Eis M. (2006). Application of new methods in solving current reclamation issues of Severoceske doly, a.s. localities. World of Surface Mining, 6, 383–386.
  59. Reynolds, J.F., Smith, D.M.S., Lambin, E.F., Turner, B.L., Mortimore, M., Batterbury, S.P., Downing, T.E., Dowlatabadi, H., Fernández, R.J., Herrick, J.E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F.T., Ayarza, M. & Walker B. (2007). Global desertification: building a science for dryland development. Science, 316(5826), 847–51. DOI: 10.1126/science.1131634.10.1126/science.113163417495163
  60. Schoener, T.W. (1974). The compression hypothesis and temporal resource partitioning. Proc. Nat. Acad. Sci., 71(10), 4169−4172. DOI: 10.1073/pnas.71.10.4169.10.1073/pnas.71.10.416943435116592190
  61. Schwinning, S. & Sala O.E. (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141(2), 211–220. DOI: 10.1007/s00442-004-1520-8.10.1007/s00442-004-1520-8
  62. Sklenicka, P., Prikryl, I., Svoboda, I. & Lhota T. (2004). Non-productive principles of landscape rehabilitation after long-term opencast mining in north-west Bohemia. Journal of the South African Institute of Mining and Metallurgy, 104, 83–88.
  63. Šmilauer, P. & Lepš J. (2014). Multivariate Analysis of Ecological Data using CANOCO 5. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9781139627061.10.1017/CBO9781139627061
  64. Tarjuelo, R., Morales, M. B., Arroyo, B., Mañosa, S., Bota, G., Casas, F. & Traba J. (2017). Intraspecific and interspecific competition induces density-dependent habitat niche shifts in an endangered steppe bird. Ecology and Evolution, 7(22), 9720–9730. DOI: 10.1002/ece3.3444.10.1002/ece3.3444
  65. ter Braak C.J.F. (1985). Correspondence analysis of incidence and abundance data: Properties in terms of a unimodal response model. Biometrics, 41(4), 859–873. DOI: 10.2307/2530959.10.2307/2530959
  66. ter Braak, C.J.F. & Looman C.W.N. (1986). Weighted averaging, logistic regression and the Gaussian response model. Vegetatio, 65, 3–11. DOI: 10.1007/BF00032121.10.1007/BF00032121
  67. ter Braak C.J.F. & Prentice I.C. (1988). A theory of gradient analysis. Adv. Ecol. Res., 18, 271–317. DOI: 10.1016/S0065-2504(08)60183-X.10.1016/S0065-2504(08)60183-X
  68. ter Braak, C.J.F. & Smilauer P. (2015). Topics in constrained and unconstrained ordination. Plant Ecol., 216(5), 683–696. DOI: 10.1007/s11258-014-0356-5.10.1007/s11258-014-0356-5
  69. Tokeshi, M. (1999). Species coexistence: ecological and evolutionary perspectives. London: Blackwell Science.
  70. Trotter, R.T., Cobb, N.S. & Whitham T.G. (2008). Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecol. Entom., 33, 1−11. DOI: 10.1111/j.1365-2311.2007.00941.x.10.1111/j.1365-2311.2007.00941.x
  71. White, T.C.R. (1976). Weather, food, and plagues of locusts. Oecologia, 22(2), 119 – 134. DOI: 10.1007/BF00344712.10.1007/BF0034471228308651
  72. White, T.C.R. (1984). The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia, 63(1), 90–105. DOI: 10.1007/BF00379790.10.1007/BF0037979028311171
  73. Yorkina, N., Maslikova, K., Kunah, O. & Zhukov O. (2018). Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina, 17, 29–45. www.biotaxa.org/em10.37828/em.2018.17.5
  74. Yorkina, N., Zhukov, O. & Chromysheva O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38(1), 1–10. DOI: 10.2478/eko-2019-0001.10.2478/eko-2019-0001
  75. Zadorozhnaya, G.A., Andrusevych, K.V. & Zhukov O.V. (2018). Soil heterogeneity after recultivation: ecological aspect. Folia Oecologica, 45 (1), 46–52. DOI: 10.2478/foecol-2018-0005.10.2478/foecol-2018-0005
  76. Zhenqi, H., Peijun, W. & Jing L. (2012). Ecological restoration of abandoned Mine land in China. Journal of Resources and Ecology, 3(4), 289–296. DOI: 10.5814/j.issn.1674-764x.2012.04.001.10.5814/j.issn.1674-764x.2012.04.001
  77. Zhukov, A. & Gadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263–278. DOI: 10.1515/eko-2016-0021.10.1515/eko-2016-0021
  78. Zhukov, O., Kunah, O., Dubinina, Y. & Novikova V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(3), 301–327. DOI: 10.2478/eko-2018-0023.10.2478/eko-2018-0023
  79. Zhukov, O.V. & Maslikova K.P. (2018). The dependence of the technosols models functional properties from the primary stratigraphy designs. Journal of Geology, Geography and Geoecology, 27(2), 399−407. DOI: 10.15421/111864.10.15421/111864
DOI: https://doi.org/10.2478/eko-2021-0020 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 178 - 188
Submitted on: Sep 19, 2019
|
Accepted on: Feb 13, 2020
|
Published on: Jul 17, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Olexander Zhukov, Olga Kunah, Marina Fedushko, Anna Babchenko, Ava Umerova, published by Slovak Academy of Sciences, Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.