Have a personal or library account? Click to login
Physiological Parameters of the State of Pinus Pallasiana D. Don in different Forest-Growth Conditions in Ravine Viyskovyi Cover

Physiological Parameters of the State of Pinus Pallasiana D. Don in different Forest-Growth Conditions in Ravine Viyskovyi

Open Access
|Jul 2021

References

  1. Аber, J., Neilson, R.P., McNulty, St., Lenihan, J.M., Bachelet, D. & Drapek R.J. (2001). Forest processes and global environmental change: predicting the effects of individual and multiply stressors. BioScience, 51(9), 735–751. DOI: 10.1641/0006-3568(2001)051[0735:FPAGEC]2.0.CO;2.
  2. Aleinikovas, M. & Grigaliūnas J. (2006). Differences of Pine (Pinus sylvestris L.) wood physical and mechanical properties from different forest site types in Lithuania. Baltic Forestry, 12(1), 9–13.
  3. Anuchin, N.P. (1982). Forest taxation (in Russian). Moscow: Forest Industry.
  4. Belgard, A.L. (1950). Forest vegetation of south-eastern part of Ukraine (in Russian). Kiev: Kiev State University Press.
  5. Belgard, A.L. (1971). Steppe forestry (in Russian). Moscow: Forest Industry.
  6. Bessonova, V.P., Korytova, A.I. & Myhajlov O.F. (1975). Some features of the water regime of white acacia, growing in different conditions of moisture (in Russian). Issues of Steppe Forest Science and Nature Conservation, 5, 136–147.
  7. Bessonova, V.P. (2001). Methods of phytoindication in the assessment of the environmental state of the environment (in Ukrainian). Zaporizhzhia: Zaporizhzhia State University Press.
  8. Bessonova, V.P., Kuchma, V.N. & Nemchenko M.V. (2015). Comparative characteristics of Pinus pallasiana at different levels of the slope of the beam in erosion plantations (in Russian). In Materials of the All-Russian Scientific and Practical Conference ‘Actual problems, current state, innovations in the field of environmental engineering and construction’ (pp. 44−49). November 11, 2015. Blagoveshhensk: Dal’nev. Publ., State Agrarian University.
  9. Bessonova, V.P., Tkach, V.V. & Kryvoruchko A.P. (2016). Water metabolism of leaves of Quercus robur in antierosion stands in the south of its range (in Ukrainian). Visnyk of Dnipropetrovsk University Biology Ecology, 24(2), 444–450. DOI: 10.15421/011660.10.15421/011660
  10. Bessonova, V. & Grytsay Z. (2018a). Content of plastid pigments in the needles of Pinus pallasiana D. Don in different forest growth conditions of anti-erosion planting. Ekológia (Bratislava), 37(4), 338–344. DOI: 10.2478/eko-2018-0025.10.2478/eko-2018-0025
  11. Bessonova, V.P. & Iusypiva T.I. (2018b). Morpho-anatomical parameters of the needles of Pinus pallasiana D. Don. in different forest growth condi-forest growth conditions of the antierosion afforestation (in Ukrainian). Ukrainian Journal of Ecology, 8(1), 851–858. DOI: 10.15421/2017_285.
  12. Çalişkan, S. & Boydak M. (2017). Afforestation of arid and semiarid ecosysd and semiarid ecosystems in Turkey. Turkish Journal of Agriculture and Forestry, 41, 317–330. DOI: 10.3906/tar-1702-39.10.3906/tar-1702-39
  13. Churagulova, Z.S. (2004). Soils of forest nurseries of the southern Urals and the optimization of their forest-growing properties (in Russian). Synopsis of the PhD Thesis of Dr. Biol. Sciences, Tomsk.
  14. Colom, M.R. & Vazzana C. (2001). Drought stress on three cultivars of Eragrostis curvula: photosynthesis and water relations. Plant Growth Regul., 34 (2), 195–202. DOI: 10.1023/A:1013392421117.10.1023/A:1013392421117
  15. Correia, M.J., Coelho, D. & David M.M. (2001). Response to seasonal drought in three cultivars of Ceratonia siliqua, leaf growth and water relation. Tree Physiol., 21(10), 645–653. DOI: 10.1093/treephys/21.10.645.10.1093/treephys/21.10.645
  16. Fotelli, M.N., Radoglou, K.M. & Constantinidou H.-I.A. (2000). Water stress responses of seedlings of four Mediterranean oak species. Tree Physiol., 20(16), 1065–1075. DOI: 10.1093/treephys/20.16.1065.10.1093/treephys/20.16.1065
  17. Furdychko, O.I., Hladun, H.B. & Lavrov V.V. (2006). Forest in the steppe: the basis of sustainable development (in Ukrainian). Kiev: Osnova Publ.
  18. Gorejko, V.A. (1992). Fastening the steep slopes of ravine-girder lands (in Russian). Forestry Information, 11, 36–39.
  19. Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Møller, I.S. & White P. (2012). Functions of macronutrients. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (pp. 135–189). DOI: 10.1016/B978-0-12-384905-2.00006-6.10.1016/B978-0-12-384905-2.00006-6
  20. Hrytsaenko, Z.M., Hrytsaenko, A.O. & Karpenko V.P. (2003). Methods of biological and agrochemical studies of plants and soils (in Ukrainian). Kiev: NICHLAVA.
  21. Hughes, L. (2000). Biological consequences of global warming: is the signal already? Trends Ecol. Evol., 15(2), 56–61. DOI: 10.1016/S0169-5347(99)01764-4.10.1016/S0169-5347(99)01764-4
  22. Ingestad, T. (1962). Macroelement nutrition of pine, spruce, and birch seedings in nutrient solution. Medd. Statens Sogsförsöksn-Satalt, 51(7), 150.
  23. Karasiuk, I.M., Herkiial, O.M., Nedviga, M.V., Hospodarenko, G.M., Bilan, I.A., Martyniuk, A.T., Kolar’kov, Yu.V., Khomchak, M.Yu., Cherno, O.D., Zamors’kyj, O.O. & Nevlad V.I. (2001). Agrochemical analysis of soil, plants and fertilizers at laboratory and practical classes on agrochemical chemistry (in Ukrainian). Kiev: NICHLAVA.
  24. Landis, T.D., Haase, D.L. & Dumroese R.K. (2005). Plant nutrient testing and analysis in forest and conservation nurseries. In R.K. Dumroese, L.E. Riley & T.D. Landis (Eds.), National proceedings: Forest and Conservation Nursery Associations–2004 (pp. 76‒83). Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
  25. Lir, Kh., Pol’ster, G. & Fidler G.-I. (1974). Physiology of woody plants (in Russian). Moscow: Forest Industry.
  26. Mercado, L.M., Patin, S., Domingues, T.F., Fyllas, N.M., Weedon, G.P., Sitch, S., Quesada, C.A., Phillips, O.L., Araga, L.E.O.C., Malhi, Y., Dolman, A.J., Restrepo-Coupe, N., Saleska, S.R., Baker, T.R., Almeida, S., Higuchi, N. & Lloyd J. (2017). Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philos. Trans. R. Soc. Lond. B, 366, 3316–3329. DOI: 10.1098/rstb.2011.0045.10.1098/rstb.2011.0045317963222006971
  27. Mitchell, H.L. (1939). The growth and nutrition of white pine (Pinus strobus L.) seedlings in cultures with varying nitrogen, phosphorus, potassium and calcium. Black Rock Forest Bulletin, 9.
  28. Moroz, O.B (1972). Materials to the characteristic of anti-erosion installations in conditions of the Samaria (in Russian). In Issues of Steppe Forest Science (pp. 44–47). Dnipropetrovsk.
  29. Morozov, G.F. (1931). The doctrine of the forest (in Russian). Moscow, Leningrad: Sel’hozgiz Publ.
  30. Netzer, F., Mueller, C.W., Scheerer, U., Grüner., J., Kögel-Knabner, I., Herschbach, C. & Rennenberg H. (2018). Phosphorus nutrition of Populus × canescens reflects adaptation to high P-availability in the soil. Tree Physiol., 38(1), 6‒24. DOI: 10.1093/treephys/tpx126.10.1093/treephys/tpx12629077948
  31. Odukalets, І.O. & Musіenko M.M. (2012). Influence of mineral element contamination on Pinus L. species in natural park “Podilski Tovtry” (in Ukrainian). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 2, 108–115. DOI: 10.15421/20122_27.
  32. Olkhovsky, A.F. (1984). Experience in the use of conifers in plantations on the eroded lands of Podolsky Transnistria (in Russian). PhD Thesis in Agricultural Sciences, Kharkiv.
  33. Pane, J.A. & Goldstein A.H. (2001). Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree Physiol., 21(5), 335–342. DOI: 10.1093/treephys/21.5.337.10.1093/treephys/21.5.337
  34. Pietrzykowski, M., Woś, B. & Haus N. (2013). Scots pine needles macronutrient (N, P, K, CA, MG, and S) supply at different reclaimed mine soil substrates – as an indicator of the stability of developed forest ecosystems. Environ. Monit. Assess., 185(9), 7445‒7457. DOI: 10.1007/s10661-013-3111-9.10.1007/s10661-013-3111-9
  35. Ponomaryova, T.V., Kuzmina, N.A. & Kuzmin S.R. (2009). Soil water reserve influence on coniferous species growth in the experimental conditions. The Bulletin of KrasGAU, 12, 45–49.
  36. Rausch, C. & Bucher M. (2002). Molecular mechanisms of phosphate transport in plants. Planta, 216(1), 23–37. DOI: 10.1007/s00425-002-0921-3.10.1007/s00425-002-0921-3
  37. Samuilov, F.D. (1971). The effect of phosphate nutrition on water metabolism and the state of water in plants under adverse moisture conditions (in Russian). In State of water and water exchange in cultivated plants (pp. 146‒153). Moscow: Science.
  38. Schwartau, V.V., Gulyaev, B.I. & Karlova A.B. (2009). Peculiarities of plants reaction on phosphorus deficiency. Plant Physiol., 41(3), 208–220.
  39. Shao, H.B., Chu, L.Y., Jaleel, Ch.A. & Zhao Ch.X. (2008). Water deficit stress induced anatomical changes in higher plants. C. R. Biol., 331, 215–225. DOI: 10.1016/j.crvi.2008.01.002.10.1016/j.crvi.2008.01.002
  40. Shcherbakov, A.P. (1964). Experience in the use of sheet diagnosis to determine the needs of pine in nitrogen and phosphorus (in Russian). In Physiological rationale for plant nutrition (pp. 324–332). Moscow: Science.
  41. Shvets’, Yu.P. (2010). Analysis of Crimean pine forests productivity (in Ukrainian). In Proceedings of the scientific conference ‘Forestry Science: Origins, Contemporary, Prospects’ (pp. 74–75). October 12–14, 2010, Kharkiv. Kharkiv: UkrNIILGA Publ.
  42. Smirnoff, N. (1998). Plant resistance to environmental stress. Curr. Opin. Biotechnol., 9, 214–219.10.1016/S0958-1669(98)80118-3
  43. Tamm, C.O. (1956). Studier over skogens näringsförhällan den. Medd. Stat-tens Skogsförsäksanstalt, 46.
  44. Tang, Z., Xu, W., Zhou, G., Bai, Y., Li, J., Tang, X., Chen, D., Liu, Q., Ma, W., Xiong, G., He, H., He, N., Guo, Y., Guo, Q., Zhu, J., Han, W., Hu, H., Fang, J. & Xie Z. (2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Nat. Acad. Sci. USA, 115(16), 4033−4038. DOI: 10.1073/pnas.1700295114.10.1073/pnas.1700295114591080329666316
  45. Tarkhanov, S.N. & Biryukov S.Yu. (2012). Influence of atmospheric pollution on the morphological parameters of the assimilation apparatus of pine and spruce in the basin of the Northern Dvina. Contemporary Problems of Ecology, 5, 300–306. DOI: 10.1134/S1995425512030158.10.1134/S1995425512030158
  46. Thakur, P.S. & Kaur H. (2001).Variation in photosynthesis, transpiration, water use efficiency, light transmission and leaf area index in multipurpose agroforestry tree species. Indian J. Plant Physiol., 6(3), 249–253.
  47. Thakur, P.S. & Sood R. (2005). Drought tolerance of multipurpose agroforestry tree species during first and second summer droughts after transplanting. Indian J. Plant Physiol., 10(1), 32–40.
  48. Tsvetkova, N.N. (2013). Features of migration of organic and mineral substances and trace elements in forest-steppe ecosystems of Ukraine (in Russian). Dnipropetrovsk: Dnipropetrovsk University Press.
  49. Velinova, K. & Naydenova T. (2008). Contents of pigments, total protein and free proline in the assimilating apparatus of scots pine (Pinus sylvestris L.) and Austrian black pine (Pinus nigra Arn.) in different soil moisture. For. Sci., 45(1), 3–15.
  50. Walther, G.R. (2003). Plants in a warmer world. Perspect. Plant Ecol. Evol. Syst., 6(3), 169–185. DOI: 10.1078/1433-8319-00076.10.1078/1433-8319-00076
  51. Wehrmann, J. (1963). Möglichkeiten und Grenzen der Blattanalyse in der Forstwirtschaft. Landwirtschaftliche Forschung, 16(2), 12–23.
  52. Wu, P., Ma, L., Hou, X., Wang, M., Wu, Y., Liu, F. & Deng X.W (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol., 132, 1260–1271. DOI: 10.1104/pp.103.021022.10.1104/pp.103.02102216706612857808
  53. Yan, Z., Li, P., Chen, Y., Han, W. & Fang J. (2016). Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific Reports, 6, 20099. DOI: 10.1038/srep20099.10.1038/srep20099474282626848020
  54. Zahner, R. & Donely J.R. (1967). Refining correlation of water deficits and radial growth in red pine. Ecology, 48, 425–430. DOI: 10.2307/1936494.10.2307/1936494
  55. Zaitseva, I. & Syrovatko V. (2016). Molecular diffusion water exchange in compartments of tissue water of Maize. International Letters of Natural Sciences, 51, 21–28. DOI: 10.18052/www.scipress.com/ILNS.51.21.10.18052/www.scipress.com/ILNS.51.21
DOI: https://doi.org/10.2478/eko-2021-0016 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 137 - 144
Submitted on: Jul 22, 2019
Accepted on: Nov 15, 2019
Published on: Jul 17, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Valentina Bessonova, Tetiana Yusypiva, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.