Have a personal or library account? Click to login
Application of Degradable Carbon and Nitrogen Moderates Carbon Sequestration Potential of Biochar in Arable Soils Cover

Application of Degradable Carbon and Nitrogen Moderates Carbon Sequestration Potential of Biochar in Arable Soils

Open Access
|Jul 2021

References

  1. Alef, K. & Nannipieri P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press.
  2. Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homm, K., Kiyono, Y., Inoue, Y., Shiraiwa, T. & Horie T. (2009). Biochar amendment techniques for upland rice production in northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res., 111, 81–84. DOI: 10.1016/j.fcr.2008.10.008.10.1016/j.fcr.2008.10.008
  3. Biswas, H., Prabhavathi, M., Patil, S.L., Kumar, A. & Morade A.S. (2019). Application of biochar as soil amendment: Theory and practice. In A. Rakshit, B. Sarkar & P.Ch. Abhilash (Eds.), Soil amendments for sustainability, challenges and perspectives (pp. 159–174). Boca Raton, London, New York: CRC Press, Taylor & Francis Group.
  4. Duiker, S.W. & Lal R. (1999). Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Tillage Res., 52, 73–81. DOI: 10.1016/S0167-1987(99)00059-8.10.1016/S0167-1987(99)00059-8
  5. Dziadowiec, H. & Gonet S.S. (1999). Methodical guide-book for soil organic matter studies (in Polish). Warszawa: Prace komisji naukowych Polskiego towarystwa gleboznaczego.
  6. Fischer, D. & Glaser B. (2012). Synergisms between compost and biochar for sustainable soil amelioration. Rijeka: Tech Europe.
  7. He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Hosseini Bai, S., Wallace, H. & Xu C. (2017). Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9, 743–755. DOI: 10.1111/gcbb.12376.10.1111/gcbb.12376
  8. Horák, J., Kondrlová, E., Igaz, D., Šimanský, V., Felber, R., Lukac, M. Balashov, E.V, Buchkina, N.P., Rizhiya, E.Y. & Jankowski M. (2017). Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia, 72(9), 995–1001. DOI: 0.1515/biolog-2017-0109.10.1515/biolog-2017-0109
  9. Horák, J., Šimanský, V., Igaz, D., Juriga, M., Aydin, E. & Lukac M. (2020). Biochar: An important component ameliorating the productivity of intensively used soils – review. Pol. J. Environ. Stud., 29(5), 1–7. DOI: 10.15244/pjoes/113128.10.15244/pjoes/113128
  10. Cheng, H., Hill, P.W., Bastami, M.S. & Jones D.Y. (2016). Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil. GCB Bioenergy, 9(6), 1110‒1121. DOI: 10.1111/gcbb.12402.10.1111/gcbb.12402
  11. IPCC (2018): Summary for policymakers. In V. Masson-Delmotte, P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor & T. Waterfield (Eds.), Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: World Meteorological Organization. https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf
  12. Ippolito, J.A., Spokas, K.A., Novak, J.M., Lentz, R.D. & Cantrell K.B. (2015). Biochar elemental composition and factors influencing nutrient retention. In J. Lehmann & J. Stephen (Eds.), Biochar for environmental management: Science, technology and implementation (pp. 137–161). London, UK, Boca Raton: Routledge, Taylor & Francis Group.
  13. Kasozi, G.N., Zimmerman, A.R., Nkedi-Kizza, P. & Gao B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced Black Carbons (Biochars). Environ. Sci. Technol., 44, 6189–6195. DOI: 10.1021/es1014423.10.1021/es101442320669904
  14. Körschner, M., Schulz, E. & Behm R. (1990). Heisswasserlőslicher C und N im Boden als Kriterium fűr das N-Nachliferungsvermőgen. Mikrobiologie, 145, 305–311.
  15. Lang, R., Blagodatsky, S., Xu, J. & Cadisch G. (2017). Seasonal differences in soil respiration and methane uptake in rubber plantation and rainforest. Agric. Ecosyst. Environ., 240, 314–328. DOI: 10.1016/j.agee.2017.02.032.10.1016/j.agee.2017.02.032
  16. Li, X., Inubushi, K. & Sakamoto K. (2002). Nitrous oxide concentrations in an Andisol profile and emissions to the atmosphere as influenced by the application of nitrogen fertilizers and manure. Biol. Fertil. Soils, 35, 108–113. DOI: 10.1007/s00374-002-0447-7.10.1007/s00374-002-0447-7
  17. Lloyd, K., Madramootoo, Ch.A., Edwards, K.P. & Grant A. (2019). Greenhouse gas emissions from selected horticultural production systems in a cold temperate climate. Geoderma, 349, 45–55. DOI: 10.1016/j.geoderma.2019.04.030.10.1016/j.geoderma.2019.04.030
  18. Loginow, W., Wisniewski, W., Gonet, S.S. & Ciescinska B. (1987). Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 20, 47–52.
  19. Novák, J., Jankowski, K., Sosnowski, J., Malinowska, E. & Wiśniewska-Kadżajan B. (2020). Influence of plant species and grasslands quality on sequestration of soil organic carbon. Ekológia (Bratislava), 39(3), 289– 300. DOI: 10.2478/eko-2020-0023.10.2478/eko-2020-0023
  20. Popelárová, E., Voříšek, K. & Strnadová S. (2002). Mineralization activity in soils for the development of the precision farming system. Arch. Acker Pfl. Boden, 48, 147−153.10.1080/03650340214160
  21. Rizhiya, E.Y., Horák, J., Šimanský, V. & Buchkina N.P. (2020). Nitrogen enriched biochar-compost mixture as a soil amendment to the Haplic Luvisol: effect on greenhouse gas emission. Biologia, 75, 873–884. DOI: 10.2478/s11756-019-00335-7.10.2478/s11756-019-00335-7
  22. Schlesinger, W.H. & Andrews J.A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20. DOI: 10.1023/A:1006247623877.10.1023/A:1006247623877
  23. Schulz, H. & Glaser B. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Soil Sci. Plant Nutr., 175, 410–422. DOI: 10.1002/jpln.201100143.10.1002/jpln.201100143
  24. Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E.A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N.H., Rice, C.W., Robledo Abad, C., Romanovskaya, A., Sperling, F. & Tubiello F. (2014). Agriculture, forestry and other land use (AFOLU). In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Krie-mann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel & J.C. Minx (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change (pp. 811–922). Cambridge, New York: Cambridge University Press.
  25. Šikanja, S. & Milovanović N. (2020). The impact of climate change on the appearance of some pathogens in oak forests (Quercus frainetto Ten.) and the analysis of thickness increase in the Šumadija Region (Central Serbia). Ekológia (Bratislava), 39(4), 310–321. DOI: 10.2478/eko-2020-0025.10.2478/eko-2020-0025
  26. Šimanský, V., Horák, J., Igaz, D., Jonczak, J., Markiewicz, M., Felber, R., Rizhiya, E.Y. & Lukac M. (2016). How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia, 71(9), 989–995. DOI: 10.1515/biolog-2016-0122.10.1515/biolog-2016-0122
  27. Wang, Z., Zong, H., Zheng, H., Liu, G., Chen, L. & Xing B. (2015). Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 138, 576–583. DOI: 10.1016/j.chemosphere.2015.06.084.10.1016/j.chemosphere.2015.06.08426210022
  28. Whitman, T., Singh, B.P. & Zimmerman A. (2015). Priming effects in biocharamended soils: Implications of biochar-soil organic matter interactions for carbon storage. In J. Lehmann & J. Stephen (Eds.), Biochar for environmental management: Science, technology and implementation (pp. 455–487). London, Boca Raton: Routledge, Taylor & Francis Group.
  29. Xu, X., Tian, H. & Hui D. (2008). Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Glob. Chang. Biol., 14, 1651–1660. DOI: 10.1111/j.1365-2486.2008.01595.x.10.1111/j.1365-2486.2008.01595.x
DOI: https://doi.org/10.2478/eko-2021-0014 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 124 - 129
Submitted on: Apr 29, 2020
Accepted on: Aug 21, 2020
Published on: Jul 17, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Vladimír Šimanský, Ján Horák, Martin Lukáč, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.