References
- Alef, K. & Nannipieri P. (1995). Methods in applied soil microbiology and biochemistry. London: Academic Press.
- Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homm, K., Kiyono, Y., Inoue, Y., Shiraiwa, T. & Horie T. (2009). Biochar amendment techniques for upland rice production in northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res., 111, 81–84. DOI: 10.1016/j.fcr.2008.10.008.10.1016/j.fcr.2008.10.008
- Biswas, H., Prabhavathi, M., Patil, S.L., Kumar, A. & Morade A.S. (2019). Application of biochar as soil amendment: Theory and practice. In A. Rakshit, B. Sarkar & P.Ch. Abhilash (Eds.), Soil amendments for sustainability, challenges and perspectives (pp. 159–174). Boca Raton, London, New York: CRC Press, Taylor & Francis Group.
- Duiker, S.W. & Lal R. (1999). Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio. Soil Tillage Res., 52, 73–81. DOI: 10.1016/S0167-1987(99)00059-8.10.1016/S0167-1987(99)00059-8
- Dziadowiec, H. & Gonet S.S. (1999). Methodical guide-book for soil organic matter studies (in Polish). Warszawa: Prace komisji naukowych Polskiego towarystwa gleboznaczego.
- Fischer, D. & Glaser B. (2012). Synergisms between compost and biochar for sustainable soil amelioration. Rijeka: Tech Europe.
- He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Hosseini Bai, S., Wallace, H. & Xu C. (2017). Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, 9, 743–755. DOI: 10.1111/gcbb.12376.10.1111/gcbb.12376
- Horák, J., Kondrlová, E., Igaz, D., Šimanský, V., Felber, R., Lukac, M. Balashov, E.V, Buchkina, N.P., Rizhiya, E.Y. & Jankowski M. (2017). Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia, 72(9), 995–1001. DOI: 0.1515/biolog-2017-0109.10.1515/biolog-2017-0109
- Horák, J., Šimanský, V., Igaz, D., Juriga, M., Aydin, E. & Lukac M. (2020). Biochar: An important component ameliorating the productivity of intensively used soils – review. Pol. J. Environ. Stud., 29(5), 1–7. DOI: 10.15244/pjoes/113128.10.15244/pjoes/113128
- Cheng, H., Hill, P.W., Bastami, M.S. & Jones D.Y. (2016). Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil. GCB Bioenergy, 9(6), 1110‒1121. DOI: 10.1111/gcbb.12402.10.1111/gcbb.12402
- IPCC (2018): Summary for policymakers. In V. Masson-Delmotte, P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor & T. Waterfield (Eds.), Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: World Meteorological Organization. https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf
- Ippolito, J.A., Spokas, K.A., Novak, J.M., Lentz, R.D. & Cantrell K.B. (2015). Biochar elemental composition and factors influencing nutrient retention. In J. Lehmann & J. Stephen (Eds.), Biochar for environmental management: Science, technology and implementation (pp. 137–161). London, UK, Boca Raton: Routledge, Taylor & Francis Group.
- Kasozi, G.N., Zimmerman, A.R., Nkedi-Kizza, P. & Gao B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced Black Carbons (Biochars). Environ. Sci. Technol., 44, 6189–6195. DOI: 10.1021/es1014423.10.1021/es101442320669904
- Körschner, M., Schulz, E. & Behm R. (1990). Heisswasserlőslicher C und N im Boden als Kriterium fűr das N-Nachliferungsvermőgen. Mikrobiologie, 145, 305–311.
- Lang, R., Blagodatsky, S., Xu, J. & Cadisch G. (2017). Seasonal differences in soil respiration and methane uptake in rubber plantation and rainforest. Agric. Ecosyst. Environ., 240, 314–328. DOI: 10.1016/j.agee.2017.02.032.10.1016/j.agee.2017.02.032
- Li, X., Inubushi, K. & Sakamoto K. (2002). Nitrous oxide concentrations in an Andisol profile and emissions to the atmosphere as influenced by the application of nitrogen fertilizers and manure. Biol. Fertil. Soils, 35, 108–113. DOI: 10.1007/s00374-002-0447-7.10.1007/s00374-002-0447-7
- Lloyd, K., Madramootoo, Ch.A., Edwards, K.P. & Grant A. (2019). Greenhouse gas emissions from selected horticultural production systems in a cold temperate climate. Geoderma, 349, 45–55. DOI: 10.1016/j.geoderma.2019.04.030.10.1016/j.geoderma.2019.04.030
- Loginow, W., Wisniewski, W., Gonet, S.S. & Ciescinska B. (1987). Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 20, 47–52.
- Novák, J., Jankowski, K., Sosnowski, J., Malinowska, E. & Wiśniewska-Kadżajan B. (2020). Influence of plant species and grasslands quality on sequestration of soil organic carbon. Ekológia (Bratislava), 39(3), 289– 300. DOI: 10.2478/eko-2020-0023.10.2478/eko-2020-0023
- Popelárová, E., Voříšek, K. & Strnadová S. (2002). Mineralization activity in soils for the development of the precision farming system. Arch. Acker Pfl. Boden, 48, 147−153.10.1080/03650340214160
- Rizhiya, E.Y., Horák, J., Šimanský, V. & Buchkina N.P. (2020). Nitrogen enriched biochar-compost mixture as a soil amendment to the Haplic Luvisol: effect on greenhouse gas emission. Biologia, 75, 873–884. DOI: 10.2478/s11756-019-00335-7.10.2478/s11756-019-00335-7
- Schlesinger, W.H. & Andrews J.A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20. DOI: 10.1023/A:1006247623877.10.1023/A:1006247623877
- Schulz, H. & Glaser B. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Soil Sci. Plant Nutr., 175, 410–422. DOI: 10.1002/jpln.201100143.10.1002/jpln.201100143
- Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E.A., Haberl, H., Harper, R., House, J., Jafari, M., Masera, O., Mbow, C., Ravindranath, N.H., Rice, C.W., Robledo Abad, C., Romanovskaya, A., Sperling, F. & Tubiello F. (2014). Agriculture, forestry and other land use (AFOLU). In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Krie-mann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel & J.C. Minx (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change (pp. 811–922). Cambridge, New York: Cambridge University Press.
- Šikanja, S. & Milovanović N. (2020). The impact of climate change on the appearance of some pathogens in oak forests (Quercus frainetto Ten.) and the analysis of thickness increase in the Šumadija Region (Central Serbia). Ekológia (Bratislava), 39(4), 310–321. DOI: 10.2478/eko-2020-0025.10.2478/eko-2020-0025
- Šimanský, V., Horák, J., Igaz, D., Jonczak, J., Markiewicz, M., Felber, R., Rizhiya, E.Y. & Lukac M. (2016). How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia, 71(9), 989–995. DOI: 10.1515/biolog-2016-0122.10.1515/biolog-2016-0122
- Wang, Z., Zong, H., Zheng, H., Liu, G., Chen, L. & Xing B. (2015). Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere, 138, 576–583. DOI: 10.1016/j.chemosphere.2015.06.084.10.1016/j.chemosphere.2015.06.08426210022
- Whitman, T., Singh, B.P. & Zimmerman A. (2015). Priming effects in biocharamended soils: Implications of biochar-soil organic matter interactions for carbon storage. In J. Lehmann & J. Stephen (Eds.), Biochar for environmental management: Science, technology and implementation (pp. 455–487). London, Boca Raton: Routledge, Taylor & Francis Group.
- Xu, X., Tian, H. & Hui D. (2008). Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Glob. Chang. Biol., 14, 1651–1660. DOI: 10.1111/j.1365-2486.2008.01595.x.10.1111/j.1365-2486.2008.01595.x