Have a personal or library account? Click to login
The Role of Microbial Biofilm in Removing Ammonia in Floating Treatment Wetlands Cover

The Role of Microbial Biofilm in Removing Ammonia in Floating Treatment Wetlands

Open Access
|Jul 2021

References

  1. Abadi, L.S.K., Shamsai, A. & Goharnejad H. (2015). An analysis of the sustainability of basin water resources using Vensim model. KSCE Journal of Civil Engineering, 19(6), 1941−1949. DOI: 10.1007/s12205-014-0570-7.10.1007/s12205-014-0570-7
  2. Allami, M.H.M., Whelan, M.J., Boom, A. & Harper D.M. (2021). Ammonia removal in free-surface constructed wetlands employing synthetic floating islands. Baghdad Science Journal, 18(2), 253‒267. DOI: 10.21123/bsj.2021.18.2.0253.10.21123/bsj.2021.18.2.0253
  3. Al Obaidy, A.M.J. & Lami M.H.M. (2014). The toxic effects of crude oil in some freshwater cyanobacteria. Journal of Environmental Protection, 5(5), 359‒367. DOI: 10.4236/jep.2014.55039.10.4236/jep.2014.55039
  4. Al Obaidy, A.M.J., Lami, M.H.M. & Al-Janabi Z.Z. (2017). Crude oil removal via isolated cyanobacteria in presence of linear alkyl benzene sulfonates. Desalination and Water Treatment, 88, 230‒234. DOI: 10.5004/dwt.2017.21400.10.5004/dwt.2017.21400
  5. Andersson, J.L., Bastviken, S.K. & Tonderski K.S. (2005). Free water surface wetlands for wastewater treatment in Sweden – nitrogen and phosphorus removal. Water Sci. Technol., 51(9), 39‒46. DOI: 10.2166/wst.2005.0283.10.2166/wst.2005.0283
  6. Anthonisen, A., Loehr, R., Prakasam, T. & Srinath E. (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollution Control Federation), 48(5), 835−852. https://www.jstor.org/stable/25038971.
  7. Boltz, J.P., Smets, B.F., Rittmann, B.E., Van Loosdrecht, M.C.M., Morgen-roth, E. & Daigger G.T. (2017). From biofilm ecology to reactors: A focused review. Water Sci. Technol., 75(8), 1753‒1760. DOI: 10.2166/wst.2017.061.10.2166/wst.2017.06128452767
  8. Borne, K.E., Fassman, E.A. & Tanner C.C. (2013). Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc. Ecological Engineering, 54, 173−182. DOI10.1016/j.ecoleng.2013.01.031.10.1016/j.ecoleng.2013.01.031
  9. Cervantes, F.J. (2009). Environmental technologies to treat nitrogen pollution: Principles and engineering. London: IWA Publishing.
  10. Chapman, B.D., Schleicher, M., Beuger, A., Gostomski, P. & Thiele J.H. (2006). Improved methods for the cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea. J. Microbiol. Methods, 65(1), 96−106. DOI: 10.1016/j.mimet.2005.06.013.10.1016/j.mimet.2005.06.01316085327
  11. Cheeseman, R., Wilson, A.L. & Gardner M.J. (1989). A manual of analytical quality control for the water industry. Marlow, Buckinghamshire: Water Research Centre.
  12. Chen, S., Ling, J. & Blancheton J.P. (2006). Nitrification kinetics of biofilm as affected by water quality factors. Aquac. Eng., 34(3), 179−197. DOI: 10.1016/j.aquaeng.2005.09.004.10.1016/j.aquaeng.2005.09.004
  13. Ciudad, G., Rubilar, O., Muñoz, P., Ruiz, G., Chamy, R., Vergara, C. & Jeison D. (2005). Partial nitrification of high ammonia concentration waste-water as a part of a shortcut biological nitrogen removal process. Process Biochem., 40(5), 1715‒1719. DOI: 10.1016/j.procbio.2004.06.058.10.1016/j.procbio.2004.06.058
  14. Costerton, J.W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D. & James G. (1994). Biofilms, the customized microniche. J. Bacteriol., 176(8), 2137−2142.10.1128/jb.176.8.2137-2142.1994
  15. Daalkhaijav, U. & Nemati M. (2014). Ammonia loading rate: An effective variable to control partial nitrification and generate the anaerobic ammonium oxidation influent. Environ. Technol., 35(5), 523−531. DOI: 10.1080/09593330.2013.796006.10.1080/09593330.2013.796006
  16. EPA (1993). Methods for the determination of inorganic substances in environmental samples. Cincinnati: US Environmental Protection Agency.
  17. Faulwetter, J.L., Burr, M.D., Cunningham, A.B., Stewart, F.M., Camper, A.K. & Stein O.R. (2011). Floating treatment wetlands for domestic wastewater treatment. Water Sci. Technol., 64(10), 2089−2095. DOI: 10.2166/wst.2011.576.10.2166/wst.2011.576
  18. Field, A., Miles, J. & Field Z. (2012). Discovering Statistics Using R. SAGE Publications.
  19. Finnegan, C.J., van Egmond, R.A., Price, O.R. & Whelan M.J. (2009). Continuous-flow laboratory simulation of stream water quality changes downstream of an untreated wastewater discharge. Water Res., 43(7), 1993−2001. DOI: 10.1016/j.watres.2009.01.031.10.1016/j.watres.2009.01.031
  20. Hargreaves, J.A. (1998). Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166(3−4), 181−212. DOI: 10.1016/s0044-8486(98)00298-1.10.1016/S0044-8486(98)00298-1
  21. Headley, T.R. & Tanner C.C. (2006). Application of floating wetlands for Enhanced Stormwater Treatment: A review. Hamilton: National Institute of Water and Atmospheric Research Ltd.
  22. Ijaz, A., Shabir, G., Khan, Q.M. & Afzal M. (2015). Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecological Engineering, 84, 58−66. DOI: 10.1016/j.ecoleng.2015.07.025.10.1016/j.ecoleng.2015.07.025
  23. Kadlec, R.H. & Wallace S.D. (2009). Treatment wetlands. New York: CRC Press.
  24. Karri, R.R., Sahu, J.N. & Chimmiri V. (2018). Critical review of abatement of ammonia from wastewater. Journal of Molecular Liquids, 261, 21−31. DOI: 10.1016/j.molliq.2018.03.120.10.1016/j.molliq.2018.03.120
  25. Lin, Y.-F., Jing, S.-R., Lee, D.-Y. & Wang T.-W. (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209(1), 169−184. DOI: DOI: 10.1016/S0044-8486(01)00801-8.10.1016/S0044-8486(01)00801-8
  26. Mackay, D. (2001). Multimedia environmental models: The fugacity approach. CRC Press.
  27. Maksimova, Y.G. (2014). Microbial biofilms in biotechnological processes. Applied Biochemistry and Microbiology, 50(8), 750−760. DOI: 10.1134/s0003683814080043.10.1134/S0003683814080043
  28. Park, S., Bae, W. & Rittmann B.E. (2010). Operational boundaries for nitrite accumulation in nitrification based on minimum/maximum substrate concentrations that include effects of oxygen limitation, pH, and free ammonia and free nitrous acid inhibition. Environ. Sci. Technol., 44(1), 335−342. DOI: 10.1021/es9024244.10.1021/es902424420039752
  29. Park, S., Chung, J., Rittmann, B.E. & Bae W. (2015). Nitrite accumulation from simultaneous free-ammonia and free-nitrous-acid inhibition and oxygen limitation in a continuous-flow biofilm reactor. Biotechnol. Bioeng., 112(1), 43−52. DOI: 10.1002/bit.25326.10.1002/bit.25326
  30. Peng, Y. & Zhu G. (2006). Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl. Microbiol. Biotechnol., 73(1), 15‒26. DOI: 10.1007/s00253-006-0534-z.10.1007/s00253-006-0534-z
  31. Philips, S., Laanbroek, H.J. & Verstraete W. (2002). Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Biotechnology, 1(2), 115−141. DOI: 10.1023/a:1020892826575.10.1023/A:1020892826575
  32. Qiao, S., Matsumoto, N., Shinohara, T., Nishiyama, T., Fujii, T., Bhatti, Z. & Furukawa K. (2010). High-rate partial nitrification performance of high ammonium containing wastewater under low temperatures. Biore-sour. Technol., 101(1), 111−117. DOI: 10.1016/j.biortech.2009.08.003.10.1016/j.biortech.2009.08.003
  33. Rohatgi, V.K. & Saleh A.K.E. (2015). An introduction to probability and statistics. Hoboken: John Wiley & Sons.10.1002/9781118799635
  34. Rousseau, D.P., Vanrolleghem, P.A. & De Pauw N. (2004). Model-based design of horizontal subsurface flow constructed treatment wet-lands: a review. Water Res., 38(6), 1484−1493. DOI: 10.1016/j.watres.2003.12.013.10.1016/j.watres.2003.12.013
  35. Ruiz, G., Jeison, D. & Chamy R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res., 37(6), 1371−1377. DOI: 10.1016/s0043-1354(02)00475-x.10.1016/S0043-1354(02)00475-X
  36. Safwat, S.M. (2018). Performance of moving bed biofilm reactor using effective microorganisms. Journal of Cleaner Production, 185, 723−731. DOI: 10.1016/j.jclepro.2018.03.041.10.1016/j.jclepro.2018.03.041
  37. SEAL Analytical (2011). Nitrate-N+Nitrite-N in drinking and surface waters, domestic and industerial wastes. SEAL Analytical.
  38. SEAL Analytical (2013). Nitrite–N in drinking waters, treated waste waters, ground and surface waters. SEAL Analytical.
  39. SEAL Analytical (2015). Ammonia–N in drinking and surface waters, domestic and industrial wastes. SEAL Analytical.
  40. Shahot, K., Idris, A., Omar, R. & Yusoff H.M. (2014). Review on biofilm processes for wastewater treatment. Life Sci., 11(11), 1−13.
  41. Stepanova, L.P., Pisareva, A.V. & Raskatov V.A. (2021). Assessment of the state of soils microbial community in condition of intensive influence of pollutants. Ekológia (Bratislava), 40(1), 8‒15. DOI: 10.2478/eko-2021-0002.10.2478/eko-2021-0002
  42. Stewart, F.M., Mulholland, T., Cunningham, A.B., Kania, B.G. & Osterlund M.T. (2008). Floating islands as an alternative to constructed wetlands for treatment of excess nutrients from agricultural and municipal wastes - Results of laboratory-scale tests. Land Contamination and Reclamation, 16(1), 25−33. DOI: 10.2462/09670513.874.10.2462/09670513.874
  43. Sun, H., Peng, Y., Wang, S. & Ma J. (2015). Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate. J. Environ. Sci. (China), 30, 157−163. DOI: 10.1016/j.jes.2014.09.029.10.1016/j.jes.2014.09.02925872722
  44. Tanner, C.C. & Headley T.R. (2011). Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37(3), 474−486. DOI: 10.1016/j. ecoleng.2010.12.012.
  45. Vadivelu, V.M., Keller, J. & Yuan Z. (2007). Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture. Water Res., 41(4), 826−834. DOI: 10.1016/j.watres.2006.11.030.10.1016/j.watres.2006.11.03017224173
  46. Van Hulle, S.W.H., Vandeweyer, H.J.P., Meesschaert, B.D., Vanrolleghem, P.A., Dejans, P. & Dumoulin A. (2010). Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem. Eng. J., 162(1), 1‒20. DOI: 10.1016/j.cej.2010.05.037.10.1016/j.cej.2010.05.037
  47. Vázquez-Burney, R., Bays, J., Messer, R. & Harris J. (2015). Floating wet-land islands as a method of nitrogen mass reduction: Results of a 1 year test. Water Sci. Technol., 72(5), 704−710. DOI: 10.2166/wst.2015.235.10.2166/wst.2015.23526287828
  48. Wang, J.-M., Gao, M.-Y., Xie, H.-J., Zhang, J. & Hu Z. (2015). Application of biological island grids in wastewater treatment and its microbial mechanisms. Desalination and Water Treatment, 54(10), 2731−2738. DOI: 10.1080/19443994.2014.906322.10.1080/19443994.2014.906322
  49. Whelan, M.J., Everitt, T. & Villa R. (2010). A mass transfer model of ammonia volatilisation from anaerobic digestate. Waste Manag., 30(10), 1808−1812. DOI: 10.1016/j.wasman.2009.08.012.10.1016/j.wasman.2009.08.01219781929
  50. Zhang, L., Zhao, J., Cui, N., Dai, Y., Kong, L., Wu, J. & Cheng S. (2016). Enhancing the water purification efficiency of a floating treatment wet-land using a biofilm carrier. Environ. Sci. Pollut. Res., 23(8), 7437−7443. DOI: 10.1007/s11356-015-5873-9.10.1007/s11356-015-5873-926697862
DOI: https://doi.org/10.2478/eko-2021-0012 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 101 - 114
Submitted on: Jun 2, 2020
Accepted on: Nov 18, 2020
Published on: Jul 17, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Muwafaq Hussein Al Lami, Michael John Whelan, Arnoud Boom, David Malcolm Harper, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.