References
- Acea, M.J., Prieto-Fernández, A. & Diz-Cid N. (2003). Cyanobacterial inoculation of heated soils: effects on microorganisms of C and N cycles on chemical composition in soil surface. Soil Biol. Biochem., 35, 513–524. DOI: 10.1016/S0038-0717(03)00005-1.10.1016/S0038-0717(03)00005-1
- Baveye, P.C. & Wander M. (2019). The (bio)chemistry of soil humus and humic substances: Why is the “new view” still considered novel after more than 80 years? Frontiers in Environmental Science, 7, 1–27. DOI: 10.3389/fenvs.2019.00027.10.3389/fenvs.2019.00027
- Blum, J.D., Klaue, A., Nezat, C.A., Driscoll, C.T., Johnson, C.E., Siccama, T.G., Eagar, C., Fahey, T.J. & Likens G.E. (2002). Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature, 417, 729–731. DOI: 10.1038/nature00793.10.1038/nature00793
- Boublík, K. (2007). Pokus o rekonstrukci potenciálni přirozené vegetace vybraného území Třeboňské pánve. Zprávy České Botanické Společnosti, 42, 155–170.
- Brookes, P.C., Landman, A., Pruden, G. & Jenkinson D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 17, 837–842. DOI: 10.1016/0038-0717(85)90144-0.10.1016/0038-0717(85)90144-0
- Buckee, G.K. (1994). Determination of total nitrogen in barley, malt and beer by Kjeldahl procedures and the Dumas combustion method – Collaborative trial. J. Inst. Brew., 100, 57–64. DOI: 10.4236/ijg.2014.54042.10.4236/ijg.2014.54042
- Buček, A., Habrová, H., Maděra, P., Král, K., Modrý, M., Lacina, J. & Pavliš J. (2015). Application of Czech methodology of biogeographical landscape differentation in geobiocoenological concept – examples from Cuba, Tasmania and Yemen. Journal of Landscape Ecology, 8, 51–67. DOI: 10.1515/jlecol-2015-0014.10.1515/jlecol-2015-0014
- Chiarucci, A., Araújo, M., Decocq, G., Beierkuhnlein, C. & Fernández-Palacios J. (2010). The concept of potential natural vegetation. J. Veg. Sci., 21, 1172–1178. DOI: 10.1111/j.1654-1103.2010.01218.x.10.1111/j.1654-1103.2010.01218.x
- Chytrý, M., Kučera, T., Kočí, M., Grulich, V. & Lustyk P. (Eds.) (2010). Katalog biotopů České republiky. Praha: Agentura ochrany přírody a krajiny ČR.
- Clarholm, M. & Skyllberg U. (2013). Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol. Biochem., 63, 142–153. DOI: 10.1016/j. soilbio.2013.03.019.
- Cohran, V.L., Elliot, L.F. & Lewis C.E. (1989). Soil microbial biomass and enzyme activity in subarctic agricultural and forest soils. Biol. Fertil. Soils, 7, 283–288. DOI: 10.1007/BF00257821.10.1007/BF00257821
- Culek, M. (2013). Biogeographical provinces, subprovinces and bioregions of the Czech Republic. Journal of Landscape Ecology, 6, 5–16. DOI: 10.2478/v10285-012-0065-5.10.2478/v10285-012-0065-5
- Datta, R., Anand, S., Moulick, A., Baraniya, D., Pathan, S.I., Rejšek, K., Vranová, V., Sharma, M., Keldar, A. & Formánek P. (2017). How enzymes are adsorbed on soil solid phase and factors limiting its activity: A Review. International Agrophysics, 31, 287–302. DOI: 10.1515/intag-2016-0049.10.1515/intag-2016-0049
- Derome, J., Lindgren, M., Merilä, P., Beuker, E. & Nöjd P. (2007). Forest condition monitoring under the UN/ECE and EU programmes in Finland. Working Papers of the Finnish Forest Research Institute, 45, 11–20.
- Elfstrand, S., Hedlund, K. & Mårtensson A. (2007). Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl. Soil Ecol., 35, 610–621. DOI: 10.1016/j. apsoil.2006.09.011.
- Elo, S., Maunukcela, L., Salkinoja-Salonen, M., Smolander, A. & Haahtela K. (2000). Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiol. Ecol., 31, 143–152.10.1111/j.1574-6941.2000.tb00679.x
- Fazekašova, D., Boltižiar, M., Bobuľska, L., Kotorova, D., Hecl, J. & Krnáčová Z. (2013). Development of soil parameters and changing landscape structure in conditions of cold mountain climate (case study Liptovská Teplička). Ekológia (Bratislava), 32, 197–210. DOI: 10.2478/eko-2013-0017.10.2478/eko-2013-0017
- González-Pastor, J.E., Hobbs, E.C. & Losick R. (2003). Cannibalism by sporulating bacteria. Science, 301, 510–513. DOI: 10.1126/science.1086462.10.1126/science.1086462
- Green, R.N., Trowbridge, R.L. & Klinka K. (1993). Towards a taxonomic classification of humus forms. For. Sci., 39, 1–49.10.1093/forestscience/39.s1.a0001
- Hyvönen, R., Olsson, B.A., Lundkvist, H. & Staaf H. (2000). Decomposition and nutrient release from Picea abies (L.) Karst. and Pinus sylvestris L. logging residues. For. Ecol. Manag., 126, 97–112. DOI: 10.1016/S0378-1127(99)00092-4.10.1016/S0378-1127(99)00092-4
- Hýsek, J. & Šarapatka B. (1998). Relationship between phosphatase active bacteria and phosphatase activities in forest soils. Biol. Fertil. Soils, 26, 112–115. DOI: 10.1007/s003740050352.10.1007/s003740050352
- Kandeler, E. & Gerber H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils, 6, 68–72. DOI: 10.1007/BF00257924.10.1007/BF00257924
- Kang, H., Xin, Z., Berg, B., Burgess, P.J., Liu, Q., Liu, Z., Li, Z. & Liu C. (2010). Global pattern of leaf litter nitrogen and phosphorus in woody plants. Ann. For. Sci., 67, 811. DOI: 10.1051/forest/2010047.10.1051/forest/2010047
- Kedi, B., Abadie, J., Sei, J., Quiquampoix, H. & Staunton S. (2013). Diversity of adsorption affinity and catalytic activity of fungal phosphatases adsorbed on some tropical soils. Soil Biol. Biochem., 56, 13–20. DOI: 10.1016/j.soilbio.2012.02.006.10.1016/j.soilbio.2012.02.006
- Kučera, M. (2016). The Czech Republic. In C. Vidal, I. Alberdi, L. Hernández & J.J. Redmond (Eds.), National Forest Inventories – Assessment of Wood Availability and Use (pp. 307–325). Springer International Publishing Switzerland. DOI: 10.1007/978-3-319-44015-6.10.1007/978-3-319-44015-6
- Lehmann, J. & Kleber M. (2015). The contentious nature of soil organic matter. Nature, 528, 60–68. DOI: 10.1038/nature16069.10.1038/nature16069
- MacLean, D.A. & Wein R.S. (1978). Litter production and forest floor nutrient dynamics in pine and hardwood stands of New Brunswick, Canada. Ecography, 1, 1–15. DOI: 10.1111/j.1600-0587.1978.tb00933.x.10.1111/j.1600-0587.1978.tb00933.x
- Magri, D., Vendramin, G.G., Comps, B., Dupanloup, I., Geburek, T., Gömöry, D., Latałowa, M., Litt, T., Paule, L., Roure, J.M., Tantau, I., van der Knaap, W.O., Petit, R.J. & de Beaulieu J.-L. (2006). A new scenario for the quarternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol., 171, 199–221. DOI: 10.1111/j.1469-8137.2006.01740.x.10.1111/j.1469-8137.2006.01740.x
- Michéli, E., Schad, P., Spaargaren, O., Dent, D. & Nachtergaele F. (2007). World reference base for soil resources 2006. A Framework for international classification, correlation and communication. UISS-ISRIC-FAO, World Soil Resources Reports, 103, 1‒128.
- Mikeska, M., Vacek, S., Prausová, R., Simon, J., Minx, T., Podrázský, V., Malík, V., Kobliha, J., Anděl, P. & Matějka K. (2008). Lesnicko-typologické vymezení, struktura a management přirozených borů a borových doubrav v ČR. Kostelec nad Černými lesy: Lesnická práce.
- Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G. & Renella G. (2003). Microbial diversity and soil functions. Eur. J. Soil Sci., 54, 655–670. DOI: 10.1111/ejss.4_12398.10.1111/ejss.4_12398
- Neuhäuslová, Z., Blažková, D., Grulich, V., Husová, M., Chytrý, M., Jeník, J., Jirásek, J., Kolbek, J., Kropáč, Z., Ložek, V., Moravec, J., Prach, K., Rybníček, K., Rybníčková, E. & Sádlo J. (1998). Mapa potencionální přirozené vegetace České republiky. Praha: Academia.
- Ostroumov, S.A. (2002). New definitions of the concept and terms ecosystem and biogeocoenosis. Doklady Biological Sciences, 383, 141–143.10.1023/A:1015393924967
- Park, S., Kub, Y.K., Seo, M.J., Kim, D.Y., Yeon, J.E., Lee, K.M., Jeong, S.-C., Yoon, W.K., Harn, C.H. & Kim H.M. (2006). Principal component analysis and diskriminant analysis (PCA-DA) for discriminating profiles of terminal restriction fragment lenght polymorphism (T-RFLP) in soil bacterial communities. Soil Biol. Biochem., 38, 2344–2349. DOI: 10.1016/j.soilbio.2006.02.019.10.1016/j.soilbio.2006.02.019
- Pizzeghello, D., Nicolini, G. & Nardi S. (2001). Hormone-like activity of humic substances in Fagus sylvaticae forests. New Phytol., 151, 647–657. DOI: 10.1046/j.0028-646x.2001.00223.x.10.1046/j.0028-646x.2001.00223.x
- Ponge, J.-F. (2013). Plant–soil feedbacks mediated by humus forms: A review. Soil Biol. Biochem., 57, 1048–1060. DOI: 10.1016/j.soilbio.2012.07.019.10.1016/j.soilbio.2012.07.019
- Ponge, J.-F. (2016). The soil under the microscope. The optical examination of a small area of Scots pine litter (Pinus sylvestris L.). Sarrebruck: Éditions Universitaires Européennes.
- Priha, O. & Smolander A. (1999). Nitrogen transformations in soil under Pinus sylvestris, Picea abies and Betula pendula at two forest sites. Soil Biol. Biochem., 31, 965–977. DOI: 10.1016/S0038-0717(99)00006-1.10.1016/S0038-0717(99)00006-1
- Priha, O., Hallantine, T. & Smolander A. (1999). Comparing microbial bio-mass, denitrification enzyme activity, and numbers of nitrifiers in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings by microscale methods. Biol. Fertil. Soils, 30, 14–19. DOI: 10.1007/s003740050581.10.1007/s003740050581
- Rao, M.A., Violante, A. & Gianfreda L. (2000). Interaction of acid phosphatase with clays, organic molecules and organo-mineral complexes: kinetics and stability. Soil Biol. Biochem., 32, 1007–1014. DOI: 10.1016/S0038-0717(00)00010-9.10.1016/S0038-0717(00)00010-9
- Rejšek, K. (1991). Acid phosphomonoesterase activity of ectomycorrhizal roots in Norway spruce pure stands exposed to pollution. Soil Biol. Biochem., 23, 667–671. DOI: 10.1016/0038-0717(91)90081-T.10.1016/0038-0717(91)90081-T
- Rejšek, K. (2006). The quantitative estimate of bioavailable inorganic phosphorus content in forest soils by the modification of the anion-exchange resin method. Soil and Water Research, 1, 117–126. DOI: 10.17221/6513-SWR.10.17221/6513-SWR
- Roscoe, R., Vasconcellos, C.A., Neto, A.E.F., Guedes, G.A.A. & Fernandes L.A. (2000). Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazlian oxisol under no-tillage and tillage systems. Biol. Fertil. Soils, 32, 52–59. DOI: 10.1007/s003740000213.10.1007/s003740000213
- Samec, P. (2006). Change in acid phosphomonoesterase and urease activities and in microbial biomass after air-drying of top-soil horizons from natural sites of Scots pine (Pinus sylvestris L.): preliminary results. Phytopedon (Bratislava), 5, 28–35.
- Samec, P. (2008). Biochemistry of ecological processes in the zonal forest soils. Review. Rep. For. Res., 53, 230–238.
- Samec, P., Kučera, A. & Tuček P. (2014). Fluctuations in the properties of forest soils in the Central European Highlands (Czech Republic). Soil and Water Research, 9, 201–213. DOI: 10.17221/68/2013-SWR.10.17221/68/2013-SWR
- Sariyildiz, T. (2015). Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnus glutinosa, Picea orientalis and Pinus sylvestris) in Turkey. For. Ecol. Manag., 335, 71–86. DOI: 10.1016/j.foreco.2014.09.030.10.1016/j.foreco.2014.09.030
- Sewerniak, P. & Piernik A. (2012). Regression models for impact of soil properties on site index class of Scots pine (Pinus sylvestris L.) stands in south-western Poland. Sylwan, 156, 563–571.
- Stevenson, B., Sparling, G.B. & Schipper L.A. (2004). Pasture and forest soil microbial communities show distinct patterns in their catabolic respiration response at a landscape level. Soil Biol. Biochem., 36, 49–55. DOI: 10.1016/j.soilbio.2003.08.018.10.1016/j.soilbio.2003.08.018
- Šindelář, J., Frýdl, J. & Novotný P. (2007). Towards the Scots pine (Pinus sylvestris L.) regional populations (ecotypes) characteristics in the Czech Republic. Rep. For. Res., 52, 148–159.
- Tarafdar, J.C., Yadav, R.S. & Meera S.C. (2001). Comparative efficiency of acid phosphatase originated from plant and fungal sources. J. Plant Nutr. Soil Sci., 164, 279–282. DOI: 10.1002/1522-2624.
- Ulrich, B. (1995). The history and possible cause of forest decline in Central Europe, with particular attention to the German situation. In EC - UN/ECE, forest soil condition in Europe. Results of a large-scale soil survey. Brussel, Geneva: UN.
- Vacek, S., Vacek, Z., Bílek, L., Simon, J., Remeš, J., Hůnová, I., Král, J., Putalová, T. & Mikeska M. (2016). Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fenn., 50, 1564. DOI: 10.14214/sf.1564.10.14214/sf.1564
- Vacek, S., Vacek, Z., Remeš, J., Bílek, L., Hůnová, I., Bulušek, D., Putalová, T., Král, J. & Simon J. (2017). Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees, 31, 1599–1617. DOI: 10.1007/s00468-017-1572-0.10.1007/s00468-017-1572-0
- Vanmechelen, L., Groenemans, R. & Van Ranst E. (1997). Forest soil condition in Europe. Results of a large-scale soil survey. Brussels, Geneva: EC-UN/ECE.
- Vavříček, D. & Chaloupka V. (2005). Nezbytnost definice půdního prostředí při mapování SLT na příkladu oblasti Babí lom. In Douda, J., Joza, V. & Šamonil P. (Eds.), Problematika lesnické typologie VII (p. 24). Praha: ČZU.
- Webster, R. (2001). Statistics to support soil research and their presentation. Eur. J. Soil Sci., 52, 331–340. DOI: 10.1046/j.1365-2389.2001.00383.x.10.1046/j.1365-2389.2001.00383.x
- Weintraub, M.N., Scott-Denton, L.E., Schmidt, S.K. & Monson R.K. (2007). The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia, 154, 327–338. DOI: 10.1007/s00442-007-0804-1.10.1007/s00442-007-0804-117657512
- Yavitt, J.B., Wright, S.J. & Wieder K. (2004). Seasonal drought and dry-season irrigation influence leaf-litter nutrients and soil enzymes in a moist, lowland forest in Panama. Austral Ecol., 29, 177–188. DOI: 10.1111/j.1442-9993.2004.tb00309.x.10.1111/j.1442-9993.2004.01334.x