Have a personal or library account? Click to login
The Geospatial Understanding of Climate-Smart Agriculture and REDD+ Implementation: Indian Perspective Cover

The Geospatial Understanding of Climate-Smart Agriculture and REDD+ Implementation: Indian Perspective

Open Access
|Feb 2020

References

  1. Ahmad, F., Uddin, M.M. & Goparaju L. (2018). Agroforestry suitability mapping of India: geospatial approach based on FAO guidelines. Agroforest Syst., 92, 1−18. DOI: 10.1007/s10457-018-0233-7.10.1007/s10457-018-0233-7
  2. Ahmad, F. & Goparaju L. (2019): Forest fire trend and influence of climate variability in India: a geospatial analysis at national and local scale. Ekológia (Bratislava), 38(1), 49–68. DOI:10.2478/eko-2019-0005.10.2478/eko-2019-0005
  3. Anand, A. & Khetarpal S. (2015). Impact of climate change on agricultural productivity. In B. Bahadur, M.V. Rajam, L. Sahijram & K.V. Krishnamurthy (Eds.), Plant biology and biotechnology (pp. 729−755). New Delhi: Springer. DOI: 10.1007/978-81-322-2286-6_30.10.1007/978-81-322-2286-6_30
  4. Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N.S. & Singh R. (2009). Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, 14, 508–515. DOI: 10.1061/(ASCE)HE.1943-5584.0000006.10.1061/(ASCE)HE.1943-5584.0000006
  5. Baur, A.H., Forster, M. & Kleinschmit B. (2015). The spatial dimension of urban greenhouse gas emissions: analyzing the influence of spatial structures and LULC patterns in European cities. Landsc. Ecol., 30, 1195. DOI: 10.1007/s10980-015-0169-5.10.1007/s10980-015-0169-5
  6. Bing, G., Yi, Z., Shi-xin, W. & He-ping T. (2014). The relationship between Normalized Difference Vegetation Index (NDVI) and climate factors in the Semi-arid Region: A case study in Yalu Tsangpo river basin of Qinghai-Tibet Plateau. Journal of Mountain Science, 11(4), 926−940. DOI: 10.1007/s11629-013-2902-3.10.1007/s11629-013-2902-3
  7. Bothale, R.V. & Katpatal Y.B. (2014). Response of rainfall and vegetation to ENSO Events during 2001–2011 in Upper Wardha Watershed, Maharashtra, India. Journal of Hydrologic Engineering, 19(3), 583−592. DOI: 10.1061/(ASCE)HE.1943-5584.0000825.10.1061/(ASCE)HE.1943-5584.0000825
  8. Byrn, M., Harrison, D., Tong, G. & Ziemba K. (2013) Mitigating climate change through tropical forests: an analysis of U.S. bilateral REDD+ financing. https://www.bren.ucsb.edu/research/2013Group_Projects/documents/REDDGPPoster.pdf
  9. Cai, Z.C., Shan, Y.H. & Xu H. (2007). Effects of nitrogen fertilization on CH4 emissions from rice fields. Soil Sci. Plant Nutr., 53(4), 353−361. DOI: 10.1111/j.1747-0765.2007.00153.x.10.1111/j.1747-0765.2007.00153.x
  10. Carlson, K.M., Gerber, J.S., Mueller, N.D., Herrero, M., MacDonald, G.K., Brauman, K.A., Havlik, P., O, Connell, Ch.S., Johnson, J.A., Saatchi, S. & West P.C. (2017). Greenhouse gas emissions intensity of global croplands. Nature Climate Change, 7, 63–68. DOI: 10.1038/nclimate3158.10.1038/nclimate3158
  11. Chakraborty, A., Seshasai, M.V.R., Reddy, C.S. & Dadhwal V.K. (2018) Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecological Indicators, 85, 887–903. DOI: 10.1016/j.ecolind.2017.11.032.10.1016/j.ecolind.2017.11.032
  12. Chaturvedi, R.K., Gopalakrishnan, R., Jayaraman, M., Bala, G., Joshi, N.V., Sukumar, R. & Ravindranath N.H. (2011). Impact of climate change on Indian forests: a dynamic vegetation modeling approach. Mitigation and Adaptation Strategies for Global Change, 16, 119−142. DOI: 10.1007/s11027-010-9257-7.10.1007/s11027-010-9257-7
  13. Dooley, E. & Chapman S. (2014). Climate-smart agriculture and REDD+ implementation in Kenya. REDD+ Law Project - Briefing Paper. Cambridge: Cambridge Centre for Climate Change Mitigation Research.
  14. Falkenmark, M., Rockstrom, J. & Karlberg L. (2009). Present and future water requirements for feeding humanity. Food Security, 1, 59–69. DOI: 10.1007/s12571-008-0003-x.10.1007/s12571-008-0003-x
  15. Funk, C.C. & Brown M.E. (2009). Declining global per capita agricultural production and warming oceans threaten food security. Food Security, 1, 271−289. DOI: 10.1007/s12571-009-0026-y.10.1007/s12571-009-0026-y
  16. Geospatial World (2012). Monitoring agricultural vulnerability using NDVI time series. https://www.geospatialworld.net/article/monitoring-agricultural-vulnerability-using-ndvi-time-series/
  17. GoI (2008). National action plan on climate change. New Delhi: Prime Minister’s Council on Climate Change (NAACP). http://www.moef.nic.in/modules/about-the-ministry/CCD/NAP_E.pdf
  18. Gupta, S., Sen, P. & Srinivasan S. (2012). Impact of climate change on Indian economy: evidence from food grain yields. Delhi: Centre for Development Economics Working Paper 218. DOI: 10.2139/ssrn.219101010.2139/ssrn.2191010
  19. Holben, B.N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens., 7(11), 1417–1434. DOI: 10.1080/01431168608948945.10.1080/01431168608948945
  20. Hou, H., Peng, S., Xu, J., Yang, S. & Mao Z. (2012). Seasonal variations of CH4 and N2O emissions in response to water management of paddy fields located in Southeast China. Chemosphere, 89(7), 889−892. DOI: 10.1016/j. chemosphere.2012.04.066.10.1016/j.chemosphere.2012.04.066
  21. INCCA (2010). Indian network for climate change assessment. India: Ministry of Environment and Forests, Government of India.
  22. IPCC (2007). Climate change 2007: Impacts, adaptation and vulnerability. In M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden & C.E. Hanson (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  23. IPCC (2014). Climate change 2014 synthesis report summary for policymakers. https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf
  24. Lal, M., Cubasch, U., Voss, R. & Waszkewitz J. (1995) Effect of transient increases in greenhouse gases and sulphate aerosols on monsoon climate. Curr. Sci., 69(9), 752−763.
  25. Lipper, L., Thornton, P., Campbell, B.M., Baedeker, B.M., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, T., Thi Sen, P., Sessa, R., Shula, R., Tibu, A. & Torquebiau E.F. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4, 1068–1072. DOI: 10.1038/nclimate2437.10.1038/nclimate2437
  26. Madhusudhan, L. (2015) Agriculture Role on Indian Economy. Bus. Eco. J., 6(4). DOI: 10.4172/2151-6219.1000176.10.4172/2151-6219.1000176
  27. Maris, S.C., Teira-Esmatges, M.R. & Catala M.M. (2016). Influence of irrigation frequency on greenhouse gases emission from a paddy soil. Paddy and Water Environment, 14(1), 199−210. DOI: 10.1007/s10333-015-0490-2.10.1007/s10333-015-0490-2
  28. NAP (2014). National Agroforestry Policy. http://www.indiaenvironmentportal.org.in/files/file/Agroforestry%20policy%202014.pdf
  29. NCAR GIS Program (2012). Climate Change Scenarios, version 2.0. Community Climate System Model, June 2004 version 3.0. http://www.cesm.ucar.edu/models/ccsm3.0/was used to derive data products. NCAR/UCAR. URL: http://www.gisclimatechange.org.
  30. Nilesh, V. (2018). 46 lakhs hectares of forests in India lost greenness: Study. http://www.newindianexpress.com/states/telangana/2018/feb/18/46-lakhs-hectares-of-forests-in-india-lost-greenness-study-1775033.html
  31. Pathak, H., Bhatia, A. & Jain N. (2014). Greenhouse gas emission from Indian agriculture: Trends, mitigation and policy needs. New Delhi: Indian Agricultural Research Institute.10.16943/ptinsa/2015/v81i5/48333
  32. Rao, C.A.R., Raju, B.M.K., Rao, A.V.M.S., Rao, K.V., Rao, V.U.M., Ramachandran, K., Venkateswarlu, B. & Sikka A.K. (2013). Atlas on vulnerability of Indian agriculture to climate change. Hyderabad: Central Research Institute for Dryland Agriculture.
  33. Ravindranath, N.H., Srivastava, N., Murthy, I.K., Malviya, S., Munsi, M. & Sharma N. (2012). Deforestation and forest degradation in India: implications for REDD+. Curr. Sci., 102(8), 1–9.
  34. Ray, K.C.S. & De U.S. (2003). Climate change in India as evidenced from instrumental records. WMO Bulletin, 2(1), 53–59.
  35. Roy, P.S., Roy, A., Joshi, P.K., Kale, M.P., Srivastava, V.K., Srivastava, S.K., Dwevidi, R.S., Joshi, Ch., Behera, M.D., Meiyappan, P., Sharma, Y., Jain, A.K., Singh, J.S., Palchowdhuri, Y., Ramachandran, R.M., Pinjarla, B., Chakravarthi, V., Babu, N., Gowsalya, M.S.,Thiruvengadan, P., Kotteeswaran, M., Priya, V., Murthy, K., Yelishetty, V.N., Maithani, S., Talukdar, G., Mondal, I., Rajan, K.S., Narendra, P.S., Biswal, S., Chakraborty, A., Padalia, H., Chavan, M., Pardeshi, S.N., Chaudhari, S.A., Anand, A., Vyas, A., Reddy, M.K., Ramalingam, M., Manonmani, R., Behera, P., Das, P., Triphati, P., Matin, S., Khan, M.L., Tripathi, O.P., Deka, J., Kumar, P. & Kushwaha D. (2015). Development of decadal (1985−1995−2005) land use and land cover database for India. Remote Sensing, 7, 2401−2430. DOI: 10.3390/rs70302401.10.3390/rs70302401
  36. Sharma, S.K., Choudhary, A., Sarkar, P., Biswas, S., Singh, A., Dadhich, P.K., Singh, A.K., Majumdar, S., Bhatia, A., Mohini, M., Kumar, R., Jha, C.S., Murthy, M.S.R., Ravindranath, N.H., Bhattacharya, J.K., Karthik, M., Bhattacharya, S. & Chauhan R. (2011). Greenhouse gas inventory estimates for India. Curr. Sci., 101(3), 405−415.
  37. Shukla, P. & Dhar S. (2016). India’s GHG emission reduction and sustainable development. In S. Nishioka (Ed.), Enabling Asia to stabilise the climate (pp. 41−54). Singapore: Springer. DOI: 10.1007/978-981-287-826-7_310.1007/978-981-287-826-7_3
  38. Sykes, M.T. (2009). Climate change impacts: Vegetation. In Encyclopedia of Life Science (ELS) (pp. 1−11). Chicester: John Wiley and Sons. DOI: 10.1002/9780470015902.a0021227.10.1002/9780470015902.a0021227
  39. UNFCC (2012). United Nations Framework on Climate Change Background (REDD). https://unfccc.int/background
  40. Zarafshani, K., Sharafi, L., Azadi, H. & Van Passel S. (2016). Vulnerability assessment models to drought: Toward a conceptual framework. Sustainability, 8(6), 588. DOI: 10.3390/su8060588.10.3390/su8060588
  41. Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliot, J., Ewert, F., Janssens, I.A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, Ch., Peng, S., Penuelas, J., Ruane, A.C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z. & Asseng S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci., 114(35), 9326−9331. DOI: 10.1073/pnas.1701762114.10.1073/pnas.1701762114558441228811375
DOI: https://doi.org/10.2478/eko-2020-0006 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 72 - 87
Published on: Feb 27, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Firoz Ahmad, Asim Farooq, Laxmi Goparaju, Javed Rizvi, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.