Have a personal or library account? Click to login
Changes in Physical and Chemical Properties of Calcic Chernozem Affected by Robinia pseudoacacia and Quercus robur Plantings Cover

Changes in Physical and Chemical Properties of Calcic Chernozem Affected by Robinia pseudoacacia and Quercus robur Plantings

Open Access
|Feb 2020

References

  1. Amundson, R., Berhe, A.A., Hopmans, J.W., Olson, C., Sztein, A.E. & Sparks D.L. (2015). Soil and human security in the 21st century. Science, 348(6235), 1261071. DOI: 10.1126/science.1261071.10.1126/science.126107125954014
  2. An, S., Mentler, A., Mayer, H. & Blum W.E.H. (2010). Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena, 81(3), 226–233. DOI: 10.1016/j.catena.2010.04.002.10.1016/j.catena.2010.04.002
  3. Baranovski, B., Roschina, N., Karmyzova, L. & Ivanko I. (2018). Comparison of commonly used ecological scales with the Belgard Plant Ecomorph System. Biosystems Diversity, 26(4), 286–291. DOI: 10.15421/011843.10.15421/011843
  4. Bárcena, T.G., Gundersen, P. & Vesterdal L. (2014). Afforestation effects on SOC in former cropland: Oak and spruce chronosequences resampled after 13 years. Global Change Biology, 20(9), 2938–2952. DOI: 10.1111/gcb.12608.10.1111/gcb.1260824753073
  5. Bejarano, M.D., Villar, R., Murillo, A.M. & Quero J.L. (2010). Effects of soil compaction and light on growth of Quercus pyrenaica Willd. (Fagaceae) seedlings. Soil Tillage Res., 110(1), 108–114. DOI: 10.1016/j.still.2010.07.008.10.1016/j.still.2010.07.008
  6. Berthrong, S.T., Piñeiro, G., Jobbágy, E.G. & Jackson R.B. (2012). Soil C and N changes with afforestation of grasslands across gradients of precipitation and plantation age. Ecol. Appl., 22(1), 76–86. DOI: 10.1890/10-2210.1.10.1890/10-2210.122471076
  7. Bonfante, A., Terribile, F. & Bouma J. (2019). Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: An Italian case study. Soil, 5(1), 1–14. DOI: 10.5194/soil-5-1-2019.10.5194/soil-5-1-2019
  8. Boussougou, I.N.M., Brais, S., Tremblay, F. & Gaussiran S. (2010). Soil quality and tree growth in plantations of forest and agricultural origin. Soil Sci. Soc. Am. J., 74(3), 993–1000. DOI: 10.2136/sssaj2009.0264.10.2136/sssaj2009.0264
  9. Brygadyrenko, V.V. (2014). Influence of soil moisture on litter invertebrate community structure of pine forests of the steppe zone of Ukraine. Folia Oecologica, 41(1), 8–16.
  10. Brygadyrenko, V.V. (2015). Community structure of litter invertebrates of forest belt ecosystems in the Ukrainian steppe zone. International Journal of Environmental Research, 9(4), 1183–1192. DOI: 10.22059/IJER.2015.1008.
  11. Brygadyrenko, V.V. (2016). Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava), 35(1), 90–102. DOI: 10.1515/eko-2016-0007.10.1515/eko-2016-0007
  12. Cambi, M., Mariotti, B., Fabiano, F., Maltoni, A., Tani, A., Foderi, C., Laschi, A. & Marchi E. (2018). Early response of Quercus robur seedlings to soil compaction following germination. Land Degrad. Dev., 29(4), 916–925. DOI: 10.1002/ldr.2912.10.1002/ldr.2912
  13. Carter, M.R. & Gregorich E.G. (2008). Soil sampling and methods of analysis. Boca Raton: CRC Press.
  14. Chaplot, V. & Cooper M. (2015). Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 243–244, 205–213. DOI: 10.1016/j.geoderma.2014.12.013.10.1016/j.geoderma.2014.12.013
  15. Chappell, A., Webb, N.P., Leys, J.F., Waters, C.M., Orgill, S. & Eyres M.J. (2019). Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environmental Science and Policy, 93, 43–52. DOI: 10.1016/j.envsci.2018.12.020.10.1016/j.envsci.2018.12.020
  16. Clark, J.D. & Johnson A.H. (2011). Carbon and nitrogen accumulation in post-agricultural forest soils of western New England. Soil Sci. Soc. Am. J., 75(4), 1530–1542. DOI: 10.2136/sssaj2010.0180.10.2136/sssaj2010.0180
  17. Day, S.D., Wiseman, P.E., Dickinson, S.B. & Harris J.R. (2010). Tree root ecology in the urban environment and implications for a sustainable rhizosphere. Arboriculture and Urban Forestry, 36, 193–205.10.48044/jauf.2010.026
  18. De Carvalho Silva Neto, E., Pereira, M.G., Fernandes, J.C.F. & De Andrade Corrêa Neto T. (2016). Aggregate formation and soil organic matter under different vegetation types in Atlantic Forest from Southeastern Brazil. Semina: Ciencias Agrarias, 37(6), 3927–3940. DOI: 10.5433/1679-0359.2016v37n6p3927.10.5433/1679-0359.2016v37n6p3927
  19. Edmondson, J.L., O’Sullivan, O.S., Inger, R., Potter, J., McHugh, N., Gaston, K.J. & Leake J.R. (2014). Urban tree effects on soil organic carbon. PLoS ONE, 9(7), e101872. DOI: 10.1371/journal.pone.0101872.10.1371/journal.pone.0101872408701325003872
  20. Foote, R.L. & Grogan P. (2010). Soil carbon accumulation during temperate forest succession on abandoned low productivity agricultural lands. Ecosystems, 13(6), 795–812. DOI: 10.1007/s10021-010-9355-0.10.1007/s10021-010-9355-0
  21. Gu, C., Mu, X., Gao, P., Zhao, G., Sun, W., Tatarko, J. & Tan X. (2019). Influence of vegetation restoration on soil physical properties in the Loess Plateau, China. Journal of Soils and Sediments, 19(2), 716–728. DOI: 10.1007/s11368-018-2083-3.10.1007/s11368-018-2083-3
  22. Guidelines for soil description (2006). Rome: FAO.
  23. Guo, L.B. & Gifford R.M. (2002). Soil carbon stocks and land use change: a metaanalysis. Global Change Biology, 8, 345–360. DOI: 10.1046/j.1354-1013.2002.00486.x.10.1046/j.1354-1013.2002.00486.x
  24. Gurmesa, G.A., Schmidt, I.K., Gundersen, P. & Vesterdal L. (2013). Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens. For. Ecol. Manag., 309, 47–57. DOI: 10.1016/j. foreco.2013.02.015.
  25. IUSS Working Group WRB (2015). World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps.
  26. Jiang, C., Liu, J., Zhang, H., Zhang, Z. & Wang D. (2019). China’s progress towards sustainable land degradation control: Insights from the northwest arid regions. Ecological Engineering, 127, 75–87. DOI: 10.1016/j.ecoleng.2018.11.014.10.1016/j.ecoleng.2018.11.014
  27. Jiang, R., Gunina, A., Qu, D., Kuzyakov, Y., Yu, Y., Hatano, R., Frimpong, K.A. & Li M. (2019). Afforestation of loess soils: Old and new organic carbon in aggregates and density fractions. Catena, 177, 49–56. DOI: 10.1016/j. catena.2019.02.002.
  28. Jiao, F., Wen, Z.-M. & An S.-S. (2011). Changes in soil properties across a chronosequence of vegetation restoration on the Loess Plateau of China. Catena, 86(2), 110–116. DOI: 10.1016/j.catena.2011.03.001.10.1016/j.catena.2011.03.001
  29. Jobbagy, E.G. & Jackson R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl., 10, 423–436. DOI: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
  30. Kormanek, M., Głąb, T., Banach, J. & Szewczyk G. (2015). Effects of soil bulk density on sessile oak Quercus petraea Liebl. seedlings. European Journal of Forest Research, 134(6), 969–979. DOI: 10.1007/s10342-015-0902-2.10.1007/s10342-015-0902-2
  31. Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623–1627. DOI: 10.1126/science.1097396.10.1126/science.1097396
  32. Lal, R. (2005). Forest soils and carbon sequestration. For. Ecol. Manag., 220(1−3), 242–258. DOI: 10.1016/j. foreco.2005.08.015.
  33. Li, W., Yan, M., Qingfeng, Z. & Zhikaun J. (2012). Effects of vegetation restoration on soil physical properties in the wind-water erosion region of the Northern Loess Plateau of China. Clean – Soil, Air, Water, 40(1), 7–15. DOI: 10.1002/clen.201100367.10.1002/clen.201100367
  34. Li, Y.Y. & Shao M.A. (2006). Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. J. Arid Environ., 64(1), 77–96. DOI: 10.1016/j.jaridenv.2005.04.005.10.1016/j.jaridenv.2005.04.005
  35. Medvedev, V.V., Plisko, I.V. & Bigun O.N. (2014). Comparative characterization of the optimum and actual parameters of Ukrainian chernozems. Eurasian Soil Science, 47(10), 1044–1057. DOI: 10.1134/S106422931410007X.10.1134/S106422931410007X
  36. Netsvetov, M., Prokopuk, Y., Didukh, Y. & Romenskyy M. (2018). Climatic sensitivity of Quercus robur L. in flood-plain near Kyiv under river regulation. Dendrobiology, 79, 20–33. DOI: 10.12657/denbio.079.003.10.12657/denbio.079.003
  37. Paul, K.I., Polglase, P.J., Nyakuengama, J.G. & Khanna P.K. (2002). Change in soil carbon following afforestation. For. Ecol. Manag., 168(1–3), 241–257. DOI: 10.1016/S0378-1127(01)00740-X.10.1016/S0378-1127(01)00740-X
  38. Polláková, N., Šimanský, V. & Kravka M.J. (2018). The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. Soils Sediments, 18, 2790. DOI: 10.1007/s11368-017-1842-x.10.1007/s11368-017-1842-x
  39. Ritter, E., Vesterdal, L. & Gundersen P. (2003). Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant Soil, 249(2), 319–330. DOI: 10.1023/A:1022808410732.10.1023/A:1022808410732
  40. Sauer, T.J., James, D.E., Cambardella, C.A. & Hernandez-Ramirez G. (2012). Soil properties following reforestation or afforestation of marginal cropland. Plant Soil, 360(1-2), 375–390. DOI: 10.1007/s11104-012-1258-8.10.1007/s11104-012-1258-8
  41. Six, J., Bossuyt, H., Degryze, S. & Denef K. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res., 79(1), 7–31. DOI: 10.1016/j.still.2004.03.008.10.1016/j.still.2004.03.008
  42. Sun, D., Zhang, W., Lin, Y., Liu, Z., Shen, W., Zhou, L., Rao, X., Liu, S., Cai, X.-A., He, D. & Fu S. (2018). Soil erosion and water retention varies with plantation type and age. For. Ecol. Manag., 422, 1–10. DOI: 10.1016/j. foreco.2018.03.048.
  43. Ussiri, D.A.N., Lal, R. & Jacinthe P.A. (2006). Soil properties and carbon sequestration of afforested pastures in reclaimed minesoils of Ohio. Soil Sci. Soc. Am. J., 70(5), 1797–1806. DOI: 10.2136/sssaj2005.0352.10.2136/sssaj2005.0352
  44. Webb, N.P., Marshall, N.A., Stringer, L.C., Reed, M.S., Chappell, A. & Herrick J.E. (2017). Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment, 15(8), 450–459. DOI: 10.1002/fee.1530.10.1002/fee.1530
  45. Wiśniewski, P. & Märker M. (2019). The role of soil-protecting forests in reducing soil erosion in young glacial landscapes of Northern-Central Poland. Geoderma, 337, 1227–1235. DOI: 10.1016/j.geoderma.2018.11.035.10.1016/j.geoderma.2018.11.035
  46. Wunder, S. & Bodle R. (2019). Achieving land degradation neutrality in Germany: Implementation process and design of a land use change based indicator. Environmental Science and Policy, 92, 46–55. DOI: 10.1016/j.envsci.2018.09.022.10.1016/j.envsci.2018.09.022
  47. Zhang, Q., Shao, M., Jia, X. & Zhang C. (2018). Understory vegetation and drought effects on soil aggregate stability and aggregate-associated carbon on the load plateau in China. Soil Sci. Soc. Am. J., 82(1), 106–114. DOI: 10.2136/sssaj2017.05.0145.10.2136/sssaj2017.05.0145
  48. Zhang, X., Yang, Z., Zha, T., Zhang, Z., Wang, G., Zhu, Y. & Lü Z. (2017). Changes in the physical properties of soil in forestlands after 22 years under the influence of the conversion of cropland into farmland project in Loess region, Western Shanxi Province. Shengtai Xuebao/Acta Ecologica Sinica, 37(2), 416–424. DOI: 10.5846/stxb201507291596.10.5846/stxb201507291596
  49. Zhang, X., Adamowski, J.F., Deo, R.C., Xu, X., Zhu, G. & Cao J. (2018). Effects of afforestation on soil bulk density and pH in the Loess Plateau, China. Water (Switzerland), 10(12), 1710. DOI: 10.3390/w10121710.10.3390/w10121710
  50. Zhou, Y., Hartemink, A. E., Shi, Z., Liang, Z. & Lu Y. (2019). Land use and climate change effects on soil organic carbon in North and Northeast China. Sci. Total Environ., 647, 1230–1238. DOI: 10.1016/j.scitotenv.2018.08.016.10.1016/j.scitotenv.2018.08.01630180331
DOI: https://doi.org/10.2478/eko-2020-0003 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 27 - 44
Published on: Feb 27, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Vadym Gorban, Artem Huslystyi, Oleksandr Kotovych, Volodymyr Yakovenko, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.