Have a personal or library account? Click to login
The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest Cover

The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest

Open Access
|Aug 2019

References

  1. Aiba, M., Takafumi, H. & Hiura T. (2012). Interspecific differences in determinants of plant species distribution and the relationships with functional traits. J. Ecol., 100. 950−957. DOI: 10.1111/j.1365-2745.2012.01959.x.10.1111/j.1365-2745.2012.01959.x
  2. Aitchison, J. (1986). The statistical analysis of compositional data. London: Chapman and Hall.10.1007/978-94-009-4109-0
  3. Aitchison, J. & Greenacre M. (2002). Biplots of Compositional Data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51, 375–392. DOI: 10.1111/1467-9876.00275.10.1111/1467-9876.00275
  4. Andivia, E., Fernández, M., Alejano, R. & Vázquez-Piqué J. (2015). Tree patch distribution drives spatial heterogeneity of soil traits in cork oak woodlands. Ann. For. Sci., 72, 549–559. DOI: 10.1007/s13595-015-0475-8.10.1007/s13595-015-0475-8
  5. Angers, D.A. & Caron J. (1998). Plant-induced Changes in Soil Structure: Processes and Feedbacks. Biogeochemistry, 42(1–2), 55–72. DOI: 10.1023/A:1005944025343.10.1023/A:1005944025343
  6. Baddeley, A. & Turner R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software, 12, 1–42. DOI: 10.18637/jss.v012.i06.10.18637/jss.v012.i06
  7. Barthes, B. & Roose E. (2002). Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena, 47(2), 133–149. DOI: 10.1016/S0341-8162(01)00180-1.10.1016/S0341-8162(01)00180-1
  8. Binkley, D. & Giardina C. (1998). Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry, 42(1–2), 89–106. DOI: 10.1023/A:1005948126251.10.1023/A:1005948126251
  9. Blanchet, F.G., Legendre, P. & Borcard D. (2008). Forward selection of explanatory variables. Ecology, 89(9), 2623–2632. DOI: 10.1890/07-0986.1.10.1890/07-0986.118831183
  10. Blank, L. & Carmel Y. (2012). Woody vegetation patch type determines herbaceous species richness and composition in Mediterranean ecosystem. Community Ecol., 13, 72–81. DOI: 10.1556/ComEc.13.2012.1.9.10.1556/ComEc.13.2012.1.9
  11. Boogaart van der, K.G., Tolosana-Delgado, R. & Bren M. (2018). Compositions: Compositional Data Analysis. R package version 1.40-2. https://CRAN.Rproject.org/package=compositions
  12. Borcard, D. & Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model., 153, 51–68. DOI: 10.1016/S0304-3800(01)00501-4.10.1016/S0304-3800(01)00501-4
  13. Bratton, S. (1976). Resource division in an understory herb community: responses to temporal and microtopographic gradients. Am. Nat., 110(974), 679–693. www.jstor.org/stable/2459584.10.1086/283097
  14. Breshears, D., Rich, P., Barnes, F. & Campbell K. (1997). Overstorey-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol. Appl., 7(4), 1201–1215. DOI: 10.2307/2641208.10.2307/2641208
  15. Buzuk, G.N. (2017). Phytoindication with ecological scales and regression analysis: environmental index. Bulletin of Pharmacy, 2 (76), 31–37.
  16. Canton, Y., Sole-Benet, A., Asensio, C., Chamizo, S. & Puigdefabregas J. (2009). Aggregate stability in range sandy loam soils Relationships with runoff and erosion. Catena, 77, 192–199. DOI: 10.1016/j.catena.2008.12.011.10.1016/j.catena.2008.12.011
  17. Chang, L.-W., Zelený, D., Li, C.-F., Chiu, S.-T. & Hsieh C.-F. (2013). Better environmental data may reverse conclusions about niche-and dispersal-based processes in community assembly. Ecology, 94, 2145–2151. DOI: 10.1890/12-2053.1.10.1890/12-2053.124358699
  18. Chase, J.M. (2014). Spatial scale resolves the niche versus neutral theory debate. J. Veg. Sci., 25, 319–322. DOI: 10.1111/jvs.12159.10.1111/jvs.12159
  19. Chudomelová, M., Zelený, D. & Li Ch.-F. (2017). Contrasting patterns of fine-scale herb layer species composition in temperate forests. Acta Oecol., 80, 24–31. DOI: 10.1016/j.actao.2017.02.003.10.1016/j.actao.2017.02.003
  20. Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett., 8, 1175–1182. DOI: 10.1111/j.1461-0248.2005.00820.x.10.1111/j.1461-0248.2005.00820.x21352441
  21. Dallas, T. & Drake J.M. (2014). Relative importance of environmental, geographic, and spatial variables on zooplankton metacommunities. Ecosphere, 5(9), 104. DOI: 10.1890/ES14-00071.1.10.1890/ES14-00071.1
  22. De la Cruz, M. (2008). Metodos para analizar datos puntuales. In F.T. Maestre, A. Escudero & A. Bonet (Eds.), Introduccion al Analisis Espacial de Datos en Ecologia y Ciencias Ambientales: Metodos y Aplicaciones (pp. 76−127). Madrid: Asociacion Espanola de Ecologia Terrestre, Universidad Rey Juan Carlos y Caja de Ahorros del Mediterraneo.
  23. Didukh, Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre.
  24. Dixon, P.M. (2002). Nearest-neighbor contingency table analysis of spatial segregation for several species. Ecoscience, 9(2), 142–151. https://www.jstor.org/stable/4290147810.1080/11956860.2002.11682700
  25. Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N. & Wagner H.H. (2018). adespatial: Multivariate multiscale spatial analysis. R package version 0.3-2. https://CRAN.R-project.org/package=adespatial.
  26. Egozcue, J.J., Pawlowsky–Glahn, V., Mateu–Figueras, G. & Barcel’o–Vidal C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35(3), 279–300. DOI: 10.1023/A:1023818214614.10.1023/A:1023818214614
  27. Elliott, K.J., Vose, J.M., Knoepp, L.D., Clinton, B.D. & Kloeppel B.D. (2015). Functional role of the herbaceous layer in eastern deciduous forest ecosystems. Ecosystems, 18(2), 221–236. DOI: 10.1007/s10021-014-9825-x.10.1007/s10021-014-9825-x
  28. Fekete, I., Varga, C., Biró, B., Tóth, J.A., Várbíró, G., Lajtha, K., Szabó, S. & Kotroczó Z. (2016). The effects of litter production and litter depth on soil microclimate in a Central European deciduous forest. Plant Soil, 398 (1–2), 291–300. DOI: 10.1007/s11104-015-2664-5.10.1007/s11104-015-2664-5
  29. Fortin, M.-J. & Dale M. (2005). Spatial analysis: Guide for ecologists. Cambridge: Cambridge University Press. Frelich, L.E., Machado, J.L. & Reich P.B. (2003). Fine scale environmental variation and structure of understorey plant communities in two old growth pine forests. J. Ecol., 91, 283–293. DOI: 10.1046/j.1365-2745.2003.00765.x.10.1046/j.1365-2745.2003.00765.x
  30. Gazol, A. & Ibanez R. (2010). Plant species composition in a temperate forest: Multi-scale patterns and determinants. Acta Oecol., 36, 634–644. DOI: 10.1016/j.actao.2010.09.009.10.1016/j.actao.2010.09.009
  31. Gilbert, B. & Lechowicz M.J. (2004). Neutrality, niches, and dispersal in a temperate forest understory. Proc. Nat. Acad. Sci. USA, 101(20), 7651–7656. DOI: 10.1073/pnas.0400814101.10.1073/pnas.040081410141966115128948
  32. Gilliam, F.S., Turrill, N.L. & Adams M.B. (1995). Herbaceous-layer and overstorey species in clear-cut and mature central Appalachian hardwood forests. Ecol. Appl., 5, 947–955. DOI: 10.2307/2269345.10.2307/2269345
  33. Gilliam, F.S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57, 845–858. DOI: 10.1641/B571007.10.1641/571007
  34. Griffith, D.A. (1992). What is spatial autocorrelation? Reflections on the past 25 years of spatial statistics. L’Espace Géographique, 21, 265–280.10.3406/spgeo.1992.3091
  35. Hurlbert, S.H. (1984). Pseudoreplication and the design of ecological field experiments. Ecol. Monogr., 54(2), 187–211. DOI: 10.2307/1942661.10.2307/1942661
  36. Jones, C.G., Lawton, J.H. & Shachak M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386. DOI: 10.2307/3545850.10.2307/3545850
  37. Jones, M.M., Tuomisto, H., Clark, D.B. & Olivas P. (2006). Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rainforest ferns. J. Ecol., 94, 181–195. DOI: 10.1111/j.1365-2745.2005.01071.x.10.1111/j.1365-2745.2005.01071.x
  38. Jones, M.M., Tuomisto, H., Borcard, D., Legendre, P., Clark, D.B. & Olivas P.C. (2008). Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 155, 593–604. DOI: 10.1007/s00442-007-0923-8.10.1007/s00442-007-0923-8
  39. Karst, J., Gilbert, B. & Lechowicz M.J. (2005). Fern community assembly: the roles of chance and the environment at local and intermediate scales. Ecology, 86, 2473–2486. DOI: 10.1890/04-1420.10.1890/04-1420
  40. King, A.W. & With K.A. (2002). Dispersal success on spatially structured landscapes: when do spatial pattern and dispersal behavior really matter? Ecol. Model., 147(1), 23−39. DOI: 10.1016/S0304-3800(01)00400-8.10.1016/S0304-3800(01)00400-8
  41. Laliberte, A.S., Rango, A., Herrick, J.E., Fredrickson, E.L. & Burkett L. (2009). An object–based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. J. Arid Environ., 69, 1–14. DOI: 10.1016/j.jaridenv.2006.08.016.10.1016/j.jaridenv.2006.08.016
  42. Legendre, P. & Fortin M.J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80(2), 107–138. DOI: 10.1007/BF00048036.10.1007/BF00048036
  43. Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659–1673. DOI: 10.2307/1939924.10.2307/1939924
  44. Legendre, P. & Gallagher E.D. (2001). Ecologically meaningful transformations for ordination of species. Oecologia, 129(2), 271–280. DOI: 10.1007/s004420100716.10.1007/s00442010071628547606
  45. Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.–F. & He F. (2009). Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology, 90, 663–674. DOI: 10.1890/07-1880.1.10.1890/07-1880.119341137
  46. Legendre, P. & Legendre L. (2012.) Numerical ecology. Amsterdam: Elsevier Science.
  47. Legendre, P. & Gauthier O. (2014). Statistical methods for temporal and space-time analysis of community composition data. Proc. R. Soc. B, 281(1778), 20132728. DOI: 10.1098/rspb.2013.2728.10.1098/rspb.2013.2728390693724430848
  48. Lennon, J.J. (2000). Red-shifts and red herrings in geographical ecology. Ecography, 23, 101−113. DOI: 10.1111/j.1600-0587.2000.tb00265.x.10.1111/j.1600-0587.2000.tb00265.x
  49. Levin, D.A. & Wilson A.C. (1976). Rates of evolution in seed plants: Net increase in diversity of chromosome numbers and species numbers through time. Proc. Nat. Acad. Sci., 73(6), 2086–2090. DOI: 10.1073/pnas.73.6.2086.10.1073/pnas.73.6.208643045416592327
  50. Lososová, Z., Šmarda, P., Chytrý, M., Purschke, O., Pyšek, P., Sádlo, J., Tichý, L. & Winter M. (2015). Phylogenetic structure of plant species pools reflects habitat age on the geological time scale. J. Veg. Sci., 26, 1080–1089. DOI: 10.1111/jvs.12308.10.1111/jvs.12308
  51. Lyon, J. & Sharpe W.E. (2003). Impacts of hay-scented fern on nutrition of northern red oak seedlings. J. Plant Nutr., 26(3), 487–502. DOI: 10.1081/PLN-120017661.10.1081/PLN-120017661
  52. MacKinney, A.L. (1929). Effects of forest litter on soil temperature and soil freezing in autumn and winter. Ecology, 10(3), 312–321. DOI: 10.2307/1929507.10.2307/1929507
  53. Mölder, A., Bernhardt-Römermann, M. & Schmidt W. (2008). Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? For. Ecol. Manag., 256(3), 272–281. DOI: 10.1016/j.foreco.2008.04.012.10.1016/j.foreco.2008.04.012
  54. Nettesheim, F.C., Garbin, M.L., Rajão, P.H.M., Araujo, D.S.D. & Grelle C.E.V. (2018). Environment is more relevant than spatial structure as a driver of regional variation in tropical tree community richness and composition. Plant Ecology & Diversity, DOI: 10.1080/17550874.2018.1473520.10.1080/17550874.2018.1473520
  55. Oijen, D., Feijen, M., Hommel, P., Ouden, J. & Waal R. (2005). Effects of tree species composition on within-forest distribution of understorey species. Appl. Veg. Sci., 8(2), 155–166. DOI: 10.1111/j.1654-109X.2005.tb00641.x.10.1111/j.1654-109X.2005.tb00641.x
  56. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner H. (2018). Community ecology package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan
  57. Paluch, J.G. & Gruba P. (2012). Effect of local species composition on topsoil properties in mixed stands with silver fir (Abies alba Mill.). Forestry: An International Journal of Forest Research, 85(3), 413–426. DOI: 10.1093/forestry/cps040.10.1093//cps040
  58. Parent, L., de Almeida, C., Hernandes, A., Egozcue, J.J., Gülser, C., Bolinder, M.A., Kätterer, T., Andrén, O., Parent, S.E., Anctil, F., Centurion, J.F. & Natale W. (2012). Compositional analysis for an unbiased measure of soil aggregation. Geoderma, 179–180, 123–131. DOI: 10.1016/j.geoderma.2012.02.022.10.1016/j.geoderma.2012.02.022
  59. Pennisi, B.V. & van Iersel M. (2002). Three ways to measure medium EC. GMPro, 22(1), 46–48.
  60. Rao, C.R. (1964). The use and interpretation of principal component analysis in applied research. Sankhyā: The Indian Journal of Statistics, Series A, 26, 329–358. https://www.jstor.org/stable/25049339
  61. Siefert, A., Ravenscroft, C., Althoff, D., Alvarez-Y Epiz, J.C., Carter, B.E., Glennon, K.L., Heberling, J.M., Jo, I.S., Pontes, A., Sauer, A., Willis, A. & Fridley J.D. (2012). Scale dependence of vegetation-environment relationships: a meta-analysis of multivariate data. J. Veg. Sci., 23, 942–951. DOI: 10.1111/j.1654-1103.2012.01401.x.10.1111/j.1654-1103.2012.01401.x
  62. Silvertown, J., McConway, K., Gowing, D., Dodd, M., Fay, M.F., Joseph, J.A. & Dolphin K. (2006). Absence of phylogenetic signal in the niche structure of meadow plant communities. Proc. R. Soc. B, 273, 39–44. DOI: 10.1098/rspb.2005.3288.10.1098/rspb.2005.3288156000416519232
  63. Smith, T.W. & Lundholm J.T. (2010). Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648–655. DOI: 10.1111/j.1600-0587.2009.06105.x.10.1111/j.1600-0587.2009.06105.x
  64. Standovár, T., Ódor, P., Aszalós, R. & Gálhidy L. (2006). Sensitivity of ground layer vegetation diversity descriptors in indicating forest naturalness. Community Ecol., 7(2), 199–209. DOI: 10.1556/ComEc.7.2006.2.7.10.1556/ComEc.7.2006.2.7
  65. Stohlgren, T.J., Owen, A.J. & Lee M. (2000). Monitoring shifts in plant diversity in response to climate change: a method for landscapes. Biodivers. Conserv., 9(1), 65–86. DOI: 10.1023/A:1008995726486.10.1023/A:1008995726486
  66. Teng, S.N., Xu, C., Sandel, B. & Svenning J-C. (2018). Effects of intrinsic sources of spatial autocorrelation on spatial regression modelling. Methods in Ecology and Evolution, 9, 363–372. DOI: 10.1111/2041-210X.12866.10.1111/2041-210X.12866
  67. Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(1), 234–240. DOI: 10.2307/143141.10.2307/143141
  68. Vadunina, A.F. & Korchagin S.A. (1986). Methods for research of physical properties of the soil. Moscow: Agropromizdat.
  69. von Oheimb, G. & Härdtle W. (2009). Selection harvest in temperate deciduous forest: impact on herb layer richness and composition. Biodivers. Conserv., 18(2), 271–287. DOI: 10.1007/s10531-008-9475-4.10.1007/s10531-008-9475-4
  70. Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T. & Bentivenga S. (2011). Advances, challenges and a developing synthesis of ecological community assembly theory. Philos. Trans. R. Soc. Lond. B, 366, 2403–2413. DOI: 10.1098/rstb.2011.0056.10.1098/rstb.2011.0056313042921768155
  71. Westhoff, V. & van der Maarel E. (1978). The Braun-Blanquet approach. In R.H. Whittaker (Ed.), Classification of plant communities (pp. 289−399). Hague: W. Junk.10.1007/978-94-009-9183-5_9
  72. Whigham, D.F. (2004). The ecology of woodland herbs in temperate deciduous forests. Annual Review of Ecology, Evolution, and Systematics, 35, 583–621. DOI: 10.1146/annurev.ecolsys.35.021103.105708.10.1146/annurev.ecolsys.35.021103.105708
  73. Xing, Z., Yan, D., Wang, D., Liu, Sh. & Dong G. (2018). Experimental analysis of the effect of forest litter cover on surface soil water dynamics under continuous rainless condition in North China. Kuwait Journal of Science, 45(2), 75–83.
  74. Yoon, T. K., Noh, N. J., Han, S., Lee, J. & Son Y. (2014). Soil moisture effects on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland forests. Soil Sci. Soc. Am. J., 78, 1804–1816. DOI: 10.2136/sssaj2014.03.0094.10.2136/sssaj2014.03.0094
  75. Zadorozhnaya, G.A., Andrusevych, K.V. & Zhukov O.V. (2018). Soil heterogeneity after recultivation: ecological aspect. Folia Oecol., 45(1), 46–52. DOI: 10.2478/foecol-2018-0005.10.2478/foecol-2018-0005
  76. Zhukov, A. & Gadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263–278. DOI: 10.1515/eko-2016-0021.10.1515/eko-2016-0021
  77. Zhukov, A.V. & Zadorozhnaya G.A. (2016). Ecomorphes of the sod-lithogenic soils on reddish-brown clays. Issues of Steppe Forestry and Forest Reclamation of Soils, 45, 91–103.
  78. Zhukov, O., Kunah, O., Dubinina, Y. & Novikova V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(3), 301–327. DOI: 10.2478/eko-2018-0023.10.2478/eko-2018-0023
  79. Zinke, P. (1962). The pattern of influence of individual forest trees on soil properties. Ecology, 43(1), 130–133. DOI: 10.2307/1932049.10.2307/1932049
DOI: https://doi.org/10.2478/eko-2019-0020 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 253 - 272
Published on: Aug 28, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Olexander Zhukov, Olga Kunah, Yulia Dubinina, Yulia Zhukova, Dmytro Ganzha, published by Slovak Academy of Sciences, Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.