Have a personal or library account? Click to login
Forest Fire Trend and Influence of Climate Variability in India: A Geospatial Analysis at National and Local Scale Cover

Forest Fire Trend and Influence of Climate Variability in India: A Geospatial Analysis at National and Local Scale

By: Firoz Ahmad and  Laxmi Goparaju  
Open Access
|Mar 2019

References

  1. Aggarwal, A., Paul, V. & Das S. (2009). Forest resources: Degradation, livelihoods, and climate change. In D. Datt & S. Nischal (Eds.), Looking back to change track (pp. 91−108). New Delhi: TERI.
  2. Ahmad, F. & Goparaju L. (2017). Geospatial assessment of forest fires in Jharkhand (India). Indian Journal of Science and Technology, 10(21), 1−7. DOI: 10.17485/ijst/2017/v10i21/113215.10.17485/ijst/2017/v10i21/113215
  3. Ahmad, F., Goparaju, L., Qayum, A. & Quli S.M.S. (2017). Forest fire trend analysis and effect of environmental parameters: A study in Jharkhand State of India using geospatial technology. World Scientific News, 90, 31−50. www.worldscientificnews.com
  4. Aldersley, A., Murray, S.J. & Cornell S.E. (2011). Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ., 409, 3472–3481. DOI: 10.1016/j.scitotenv.2011.05.032.10.1016/j.scitotenv.2011.05.03221689843
  5. Antonovsky, M.Ya., Ter-Mikhaelian, M.T. & Furyaev V.V. (1989). A spatial model of longterm forest fire dynamics and its applications to forests in western Siberia. WP-89-109. Laxenburg: International Institute for Applied Systems Analysis.
  6. Belgherbi, B., Benabdeli, K. & Mostefai K. (2018). Mapping the risk forest fires in Algeria: Application of the forest of Guetarnia in Western Algeria. Ekológia (Bratislava), 37(3), 289–300. DOI: 10.2478/eko-2018-0022.10.2478/eko-2018-0022
  7. Blackmarr, W.H. (1972). Moisture content influences ignitability of slash pine litter. Research Note SE-173. Asheville: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.
  8. Bond, W.J. & van Wilgen B.W. (1996). Fire and plants. London: Chapman and Hall.10.1007/978-94-009-1499-5
  9. Bond, W.J. & Keeley J.E. (2005). Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol., 20, 387–394. DOI: 10.1016/j.tree.2005.04.025.10.1016/j.tree.2005.04.02516701401
  10. Bowman, D.M., Balch J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D,Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, Ch.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, Ch.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R. & Pyne S.J. (2009). Fire in the earth system. Science, 324, 481–484. DOI: 10.1126/science.1163886.10.1126/.1163886
  11. Bradstock, R.A. (2010). A biogeographical model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeogr., 19, 145–158. DOI: 10.1111/j.1466-8238.2009.00512.x.10.1111/j.1466-8238.2009.00512.x
  12. Brown, T.J., Hall, B.L. & Westerling A.L. (2004). The impact of twenty-first century climate change on wild-land fire danger in the western United States: an appli-cations perspective. Clim. Change, 62, 365–388. DOI: 10.1023/B:CLIM.0000013680.07783.de.10.1023/B:CLIM.0000013680.07783.de
  13. Capitanio, R. & Carcaillet C. (2008). Post-fire Mediterranean vegetation dynamics and diversity: A discussion of succession models. For. Ecol. Manag., 255, 431–439. DOI: 10.1016/j.foreco.2007.09.010.10.1016/j.foreco.2007.09.010
  14. Carcaillet, C. & Richard P.J.H. (2000). Holocene changes in seasonal precipitation highlighted by fire incidence in eastern Canada. Climate Dynamics, 16(7), 549–559. DOI: 10.1007/s003820000062.10.1007/s003820000062
  15. Champion, H. & Seth S.K. (1968). A revised survey of the forest types of India. Delhi: Manager of Publications.
  16. Chaturvedi, R.K., Gopalakrishnan, R., Jayaraman, M., Bala, G., Joshi, N.V., Sukumar, R. & Ravindranath N.H. (2011). Impact of climate change on Indian forests: a dynamic vegetation modeling approach. Mitigation and Adaptation Strategies for Global Change, 16(2), 119−142. DOI: 10.1007/s11027-010-9257-7.10.1007/s11027-010-9257-7
  17. Crutzen, P.J. & Andreae M.O. (1990). Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 250(4988), 1669−1678. DOI: 10.1126/science.250.4988.1669.10.1126/.250.4988.1669
  18. Engstrom, R.T. (2010). First-order fire effects on animals: review and recommendations. Fire Ecology, 6(1), 115–130. DOI: 10.4996/fireecology.0601115.10.4996/fireecology.0601115
  19. FAO (2001). Global forest fire assessment 1990–2000. Rome: FAO (Forest Resources Assessment).
  20. Ferreira, A.J.D., Coelho, C.O.A., Ritsema, C.J., Boulet, A.K. & Keizer J.J. (2008). Soil and water degradation processes in burned areas: Lessons learned from a nested approach. Catena, 74, 273–285. DOI: 10.1016/j.catena.2008.05.007.10.1016/j.catena.2008.05.007
  21. Finney, M.A. (2001). Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For. Sci., 47, 219−229. DOI: 10.1093/forestscience/47.2.219.10.1093/forestscience/47.2.219
  22. Flannigan, M.D. & Harrington J.B. (1988). A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada 1953–1980. Journal of Applied Meteorology, 27, 441–452. https://www.jstor.org/stable/26183591.10.1175/1520-0450(1988)027<0441:ASOTRO>2.0.CO;2
  23. Flannigan, M.D., Stocks, B.J. & Wotton B.M. (2000). Climate change and forest fires. Sci. Total Environ., 262(3), 221–229. DOI: 10.1016/S0048-9697(00)00524-6.10.1016/S0048-9697(00)00524-6
  24. Flannigan, M.D., Logan, K.A., Amiro, B.D., Skinner, W.R. & Stocks B.J. (2005). Future area burned in Canada. Clim. Change, 72, 1–16. DOI: 10.1007/s10584-005-5935-y.10.1007/s10584-005-5935-y
  25. Fried, J.S., Torn, M.S. & Mills E. (2004) The impact of climate change on wildfire severity: a regional forecast for northern California. Clim. Change, 64(1−2), 169–191. DOI: 10.1023/B:CLIM.0000024667.89579.ed.10.1023/B:CLIM.0000024667.89579.ed
  26. FSI (2009). State of Forest Report (1987–2007). Dehra Dun: Forest Survey of India, Ministry of Environment and Forests.
  27. FSI (2015). http://fsi.nic.in/isfr-2015/isfr-2015-executive-summary.pdf (accessed on 15th November 2017).
  28. Gill, A.M. (1975). Fire and the Australian flora: A review. Aust. For., 38, 4–25. DOI: 10.1080/00049158.1975.10675618.10.1080/00049158.1975.10675618
  29. Giriraj, A., Babar, S., Jentsch, A., Sudhakar, S. & Murthy M.S.R. (2010 Tracking fires in India using Advanced Along Track Scanning Radiometer (A)ATSR data. Remote Sensing, 2, 591–610. DOI: 10.3390/rs2020591.10.3390/rs2020591
  30. Hansen, J., Ruedy, R., Sato, M. & Lo K. (2010). Global surface temperature change. Reviews of Geophysics, 48, RG4004. DOI: 10.1029/2010RG000345.10.1029/2010RG000345
  31. Harrison, S., Marlon, J. & Bartlein P. (2010). Fire in the earth system. In J. Dodson (Ed.), Changing climates, earth systems and society (pp. 21-48). Dordrecht: Springer. DOI: 10.1007/978-90-481-8716-4.10.1007/978-90-481-8716-4
  32. Jain, S.K., Kumar, V. & Saharia M. (2013). Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology, 33(4), 968–978. DOI: 10.1002/joc.3483.10.1002/joc.3483
  33. Jhajharia, D., Shrivastava, S.K., Sarkar, D. & Sarkar S. (2009). Temporal characteristics of pan evaporation trends under the humid conditions of northeast India. Agric. For. Meteorol., 149, 763–770. DOI: 10.1016/j.agrformet.2008.10.024.10.1016/j.agrformet.2008.10.024
  34. Joseph, S., Anitha, K. & Murthy M.S.R. (2009). Forest fire in India: a review of the knowledge base. J. For. Res., 14, 127−134. DOI: 10.1007/s10310-009-0116-x.10.1007/s10310-009-0116-x
  35. Kirschbaum, M. & Fischlin A. (1996). Climate change impacts on forests. In R. Watson, M.C. Zinyowera & R.H. Moss (Eds.), Climate change 1995 − Impacts, adaptations and mitigation of climate change: scientific-technical analysis (pp. 95−129). Cambridge: Cambridge University Press.
  36. Kishwan, J., Pandey, R. & Dadhwal V.K. (2009). India’s forest and tree cover: contributions as a carbon sink. Technical paper No 130 by Indian Council of Forestry Research and Education, ICFRE Bl-23. http://www.envfor.nic.in/mef/Technical_Paper.pdf
  37. Kozak, I., Węgiel, A., Strzeliński, P., Frąk, R., Stępień, A., Kociuba, P. & Kozak H. (2014). FORKOME model application for prognosis of forest fires. Ekológia (Bratislava), 33(4), 391–400. DOI: 10.2478/eko-2014-0035.10.2478/eko-2014-0035
  38. Krawchuk, M.A. & Moritz M.A (2011). Constraints on global fire activity vary across a resource gradient. Ecology, 92(1), 121–132. DOI: 10.1890/09-1843.1.10.1890/09-1843.121560682
  39. Krusel, N., Packham, D. & Tapper N.J. (1993). Wildfire activity in the malee shrubland of Victoria, Australia. Int. J. Wild-land Fire, 3(4), 217−227. DOI: 10.1071/WF9930217.10.1071/WF9930217
  40. Kumar, V. & Jain S.K. (2011). Trends in rainfall amount and number of rainy days in river basins of India (1951–2004). Hydrology Research, 42(4), 290–306. DOI: 10.2166/nh.2011.067.10.2166/nh.2011.067
  41. Kutiel, P. & Inbar M. (1993). Fire impacts on soil nutrients and soil erosion in a Mediterranean pine forest plantation. Catena, 20, 129–139. DOI: 10.1016/0341-8162(93)90033-L.10.1016/0341-8162(93)90033-
  42. Liebetrau, A.M. (1983). Measures of association. Newbury Park: Sage Publications.10.4135/9781412984942
  43. Littell, J.S., McKenzie, D. L., Peterson, D.L. & Westerling A.L. (2009). Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl., 19(4), 1003–1021. DOI: 10.1890/07-1183.1.10.1890/07-1183.119544740
  44. Manhas, R.K., Negi. J.D.S., Kumar, R. & Chauhan P.S. (2006). Temporal assessment of growing stock, biomass and carbon stock of Indian forests. Clim. Change, 74, 191–221. DOI: 10.1007/s10584-005-9011-4.10.1007/s10584-005-9011-4
  45. Marlon, J.R., Bartlein, P.J., Carcaillet, C., Gavin, D.G., Harrison, S.P., Higuera, P.E., Joos, F., Power, M.J. & Prentice I.C. (2008). Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience, 1, 697–702.10.1038/ngeo313
  46. McKenzie, D., Gedalof, Z., Peterson, D.L. & Mote P. (2004). Climatic change, wildfire, and conservation. Conserv. Biol., 18(4), 890–902. DOI: 10.1111/j.1523-1739.2004.00492.x.10.1111/j.1523-1739.2004.00492.x
  47. Meinke, H. & Stone R.C. (2005). Seasonal and inter-annual climate forecasting: The new tool for increasing preparedness to climate variability and change in agricultural planning and operations. Clim. Change, 70, 221–253. DOI: 10.1007/s10584-005-5948-6.10.1007/s10584-005-5948-6
  48. Moritz, M.A., Morais, M.E., Summerell, L.A., Carlson, J.M. & Doyle J. (2005). Wildfires, complexity, and highly optimized tolerance. Proc. Natl. Acad. Sci. USA, 102(50), 17912–17917. DOI: 10.1073/pnas.0508985102.10.1073/pnas.0508985102131240716332964
  49. Mouillot, F., Rambal, S. & Joffre R. (2002). Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology, 8(5), 423–437. DOI: 10.1046/j.1365-2486.2002.00494.x.10.1046/j.1365-2486.2002.00494.x
  50. Pausas, J.G. (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Clim. Change, 63(3), 337–350. DOI: 10.1023/B:CLIM.0000018508.94901.9c.10.1023/B:CLIM.0000018508.94901.9c
  51. Pausas, J.G. & Fernández-Muñoz S. (2012). Fire regime changes in the western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Change, 110, 215–226. DOI: 10.1007/s10584-011-0060-6.10.1007/s10584-011-0060-6
  52. Pinol, J., Terradas, J. & Lloret F. (1998). Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim. Change, 38, 345−357. DOI: 10.1023/A:1005316632105.10.1023/A:1005316632105
  53. Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J.T., Washington, W.M., Fu, Q., Sikka, D.R. & Wild M. (2005). Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA, 102(15), 5326−5333. DOI: 10.1073/pnas.0500656102.10.1073/pnas.050065610255278615749818
  54. Reddy, C.S., Jha, C.S., Diwakar, P.G. & Dadhwal V.K. (2015). Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess., 187(12), 777. DOI: 10.1007/s10661-015-4990-8.10.1007/s10661-015-4990-826615560
  55. Reddy, C.S., Alekhya, V.V.L. P., Saranya, K.R.L., Athira, K., Jha, C.S., Diwakar, P.G. & Dadhwal V.K. (2017). Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions. Journal of Earth System Science, 126, 11. DOI: 10.1007/s12040-016-0791-x.10.1007/s12040-016-0791-x
  56. Riebau, A.R. & Fox D. (2001). The new smoke management. Int. J. Wildland Fire, 10, 415–427. DOI: 10.1071/WF01039.10.1071/WF01039
  57. Rodriguez y Silva, F., Molina, J.R., González-Cabán, A. & Machuca H.M.A. (2012). Economic vulnerability of timber resources to forest fires. J. Environ. Manag., 100, 16−21. DOI: 10.1016/j.jenvman.2011.12.026.10.1016/j.jenvman.2011.12.02622343614
  58. Roy, P.S. (2003). Forest fire and degradation assessment using satellite remote sensing and geographic information system fire and degradation assessment using satellite remote sensing and geographic information system. In M.V.K. Sivakumar, P.S. Roy, K. Harmsen & S.K. Saha (Eds.), Satellite Remote Sensing and GIS Applications in Agricultural Meteorology (pp. 361−400). Proceedings of a Training Workshop, 7−11 July 2003 in Dehra Dun, India.
  59. Roy, P.S., Roy, A., Joshi, P.K., Kale, M.P., Srivastava, V.K., Srivastava, S.K., Dwevidi, R.S., Joshi, C., Behera, M.D., Meiyappan, P., Sharma, Y., Jain, A.K., Singh, J.S., Palchowdhuri, Y., Ramachandran, R.M., Pinjarla, B., Chakravarthi, V., Babu, N., Gowsalya, M.S., Thiruvengadam, P., Kotteeswaran, M., Priya, V., Yelishetty, K.M.V.N., Maithani, S., Talukdar, G., Mondal, I., Rajan, K.S:, Narendra, P.S., Biswal, S., Chakraborty, A., Padalia, H., Chavan, M., Pardeshi, S.N., Chaudhari, S.A., Anand, A., Vyas, A., Reddy, M.K., Ramalingam, M., Manonmani, R., Behera, P., Das, P., Tripathi, P., Matin, S., Khan, M.L., Tripathi, O.P., Deka J., Kumar, P. & Kushwaha D. (2015). Development of decadal (1985−1995−2005) land use and land cover database for India. Remote Sens., 7, 2401−2430. DOI: 10.3390/rs70302401.10.3390/rs70302401
  60. Running, S.W. (2006). Is global warming causing more, larger wildfires? Science, 313(5789), 927–928. DOI: 10.1126/science.1130370.10.1126/.1130370
  61. Secretariat of the convention on biological diversity (2001). Impacts of human-caused fires on biodiversity and ecosystem functioning, and their causes in tropical, temperate and boreal forest biomes. Montreal: SCBD.
  62. Sinha Ray, K.C. & De U.S. (2003). Climate change in India as evidenced from instrumental records. WMO Bulletin, 2(1), 53–59.
  63. Song, Hark-Soo & Lee Sang-Hee (2017). Effects of wind and tree density on forest fire patterns in a mixed-tree species forest. Forest Science and Technology, 13(1), 9−16. DOI: 10.1080/21580103.2016.1262793.10.1080/21580103.2016.1262793
  64. Srivastava, R.K. & Singh D. (2003). Forest fire, haze pollution and climate change. Special issue: Climate change and forestry-Part 1. Indian For., 129, 725−734.
  65. Stephens, S.L. (2005). Forest fire causes and extent on United States Forest Service lands. Int. J. Wildland Fire, 14(3), 213–222. DOI: 10.1071/WF04006.10.1071/WF04006
  66. Swetnam, T.W. & Betancourt J.L. (1990). Fire southern oscillation relations in the southwestern United-States. Science, 249(4972), 1017–1020. DOI: 10.1126/science.249.4972.1017.10.1126/.249.4972.1017
  67. Swetnam, T.W. & Betancourt J.L. (1998). Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. Journal of Climate, 11(12), 3128–3147. DOI: 10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2.10.1175/1520-0442(1998)011<3128:MDAERT>2.0.CO;2
  68. Šimanský, V. (2015) Changes in soil structure and soil organic matter due to different severities of fire. Ekológia (Bratis-lava), 34(3), 226–234. DOI: 10.1515/eko-2015-0022.10.1515/eko-2015-0022
  69. Tapper, N.J., Garden, G., Gill, J. & Fernon J. (1993) The climatology and meteorology of high fire danger in the northern territory. Rangeland Journal, 15(2), 339−351. DOI: 10.1071/RJ9930339.10.1071/RJ9930339
  70. Tian, X., Shu, L., Zhao, F. & Wang M. (2012). Forest fire danger changes for southwest China under future scenarios. Scientia Silvae Sinicae, 48, 121–125. http://www.linyekexue.net/EN/10.11707/j.1001-7488.20120120.
  71. Vadrevu, K.P., Badarinath, K.V. & Anuradha E. (2008). Spatial patterns in vegetation fires in the Indian region. Environ Monit Assess., 147(1−3), 1−13. DOI: 10.1007/s10661-007-0092-6.10.1007/s10661-007-0092-6
  72. Vadrevu, K.P., Ellicott, E., Badarinath, K.V.S. & Vermote E. (2011). MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut., 159, 1560–1569. DOI: 10.1016/j.envpol.2011.03.001.10.1016/j.envpol.2011.03.001
  73. Vadrevu, K.P., Cziszar, I., Ellicott, E., Giglio, L., Badarinath, K.V.S., Vermote, E. & Justice Ch. (2013). Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE Journal of Selected Topics Applied Earth Observations and Remote Sensing, 6(1), 224–238. DOI: 10.1109/JSTARS.2012.2210699.10.1109/JSTARS.2012.2210699
  74. Vicente-Serrano, S.M., Begueria, S. & Lopez-Moreno J.I. (2010). A multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index-SPEI. Journal of Climate, 23, 1696−1718. DOI: 10.1175/2009JCLI2909.1.10.1175/2009JCLI2909.1
  75. Vorobyov, Y., (2004) Climate change and disasters in Russia. In Ju.A. Izrael, G. Gruza, S. Semenov, I. Nazarov & E. Kuasnikova (Eds.), Proceedings of the World Climate Change Conference (pp. 293−298). Moscow: Institute of Global Climate and Ecology.
  76. Wang, W., Zhang, Ch., Allen, J.M., Li, W., Boyer, M.A., Segerson, K. & Silander J.A. (2016). Analysis and prediction of land use changes related to invasive species and major driving forces in the state of Connecticut. Land, 5(3), 25. DOI: 10.3390/land5030025.10.3390/5030025
  77. Wells, N., Goddard, S. & Hayes M.J. (2004) A self-calibrating Palmer Drought Severity Index. Journal of Climate, 17(12), 2335–2351. DOI: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2.10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2
  78. Westerling, A.L., Gershunov, A., Brown, T.J., Cayan, D.R. & Dettinger M.D. (2003). Climate and wildfire in the western United States. Bulletin of the American Meteorological Society, 84(5), 595–604. DOI: 10.1175/BAMS-84-5-595.10.1175/BAMS-84-5-595
  79. Westerling, A.L. Hidalgo, H.G., Cayan, D.R. & Swetnam T.W. (2006). Warming and earlier spring increase Western U.S. forest wildfire activity. Science, 313(5789), 940–943. DOI: 10.1126/science.1128834.10.1126/.1128834
  80. Wotton, B.M., Nock, C.A. & Flannigan M.D. (2010) Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire, 19, 253–271. DOI: 10.1071/WF09002.10.1071/WF09002
DOI: https://doi.org/10.2478/eko-2019-0005 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 49 - 68
Published on: Mar 16, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Firoz Ahmad, Laxmi Goparaju, published by Slovak Academy of Sciences, Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.