Have a personal or library account? Click to login
Determination of Organic Fractions and Enzymatic Activity in Forest Spruce Soil of Tatra National Park Cover

Determination of Organic Fractions and Enzymatic Activity in Forest Spruce Soil of Tatra National Park

Open Access
|Dec 2018

References

  1. Adam, G. & Duncan H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem., 33(7), 943–951. DOI: 10.1016/S0038-0717(00)00244-3.10.1016/S0038-0717(00)00244-3
  2. Allen, S.E. (1974). Chemical analysis of ecological materials. Oxford : Blackwell Scientific. https://trove.nla.gov.au/version/45810376
  3. Baldrian, P., Kolařík, M., Štursová, M., Kopecký, J., Valášková, V., Větrovský, T., Žifčáková, L., Šnajdr, J., Rídl, J., Vlček, Č. & Voříšková J. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal, 6(2), 248–258. DOI: 10.1038/ismej.2011.95.10.1038/ismej.2011.95
  4. Bardgett, R. (2005). The biology of soil: A community and ecosystem approach. Oxford: OUP.10.1093/acprof:oso/9780198525035.001.0001
  5. Błońska, E., Lasota, J. & Gruba P. (2016). Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand. Ecol. Res., 31(5), 655–664. DOI: 10.1007/s11284-016-1375-6.10.1007/s11284-016-1375-6
  6. Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. & Paul E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988–995. DOI: 10.1111/gcb.12113.10.1111/gcb.12113
  7. Crawford, D.L. & Crawford R.L. (1980). Microbial degradation of lignin. Enzyme Microb. Technol., 2(1), 11–22. DOI: 10.1016/0141-0229(80)90003-4.10.1016/0141-0229(80)90003-4
  8. Don, A., Bärwolff, M., Kalbitz, K., Andruschkewitsch, R., Jungkunst, H.F. & Schulze E.-D. (2012). No rapid soil carbon loss after a windthrow event in the High Tatra. For. Ecol. Manag., 276, 239–246. DOI: 10.1016/j.foreco.2012.04.010.10.1016/j.foreco.2012.04.010
  9. Ďugová, O., Barančoková, M., Krajčí, J. & Barančok P. (2013). Soil micromycetes and vegetation changes associated with vegetative cover destruction on chosen localities of tatry mountains - first approach. Ekológia (Bratislava), 32(2), 158–261. DOI: 10.2478/eko-2013-0014.10.2478/eko-2013-0014
  10. Ehrman, T. (1996). Determination of Acid-Soluble lignin in biomass. Golden, CO: National Renewable Energy Laboratory.
  11. Eivazi, F. & Tabatabai M. A. (1977). Phosphatases in soils. Soil Biol. Biochem., 9(3), 167–172. DOI: 10.1016/0038-0717(77)90070-0.10.1016/0038-0717(77)90070-0
  12. Flaig, W., Beutelspacher, H. & Rietz E. (1975). Chemical composition and physical properties of humic substances. In Soil components (pp. 1–211). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-65915-7_1.10.1007/978-3-642-65915-7_1
  13. Gáfriková, J. & Hanajík P. (2016). Soil respiration, microbial abundance, organic matter and c, h, n, s contents among recovering windthrow sites in tatra national park. Phytopedon (Bratislava), 14, 7–14.
  14. Gömöryová, E., Střelcová, K., Škvarenina, J., Bebej, J. & Gömöry D. (2008). The impact of windthrow and fire disturbances on selected soil properties in the Tatra National Park. Soil and Water Research, 3, S74–S80. DOI: 10.17221/9/2008-SWR.10.17221/9/2008-SWR
  15. Green, V., Stott, D. & Diack M. (2006). Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem., 38, 693–701.10.1016/j.soilbio.2005.06.020
  16. Gruba, P. & Mulder J. (2015). Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ., 511, 655–662. DOI: 10.1016/j.scitotenv.2015.01.013.10.1016/j.scitotenv.2015.01.01325596350
  17. Hanajík, P. & Fritze H. (2009). Effects of forest management on soil properties at windthrow area in tatra national park (TANAP). Acta Environmentalica Universitatis Comenianae (Bratislava), 17, 36–46.
  18. Hanajík, P., Šimonovičová, A. & Vykouková I. (2016a). Vybrané pôdno-ekologické charakteristiky na kalamitnom území v TANAP-e (2005 – 2016). Ostrava: Vysoká škola banská - Technická univerzita v Ostrave.
  19. Hanajík, P., Zvarik, M., Fritze, H., Simkovic, I. & Kanka R. (2016b). Composition of microbial PLFAs and correlations with topsoil characteristics in the rare active travertine spring-fed fen. Ekológia (Bratislava), 35, 295–308. DOI: 10.1515/eko-2016-0024.10.1515/eko-2016-0024
  20. Hanajík, P., Gáfriková, J. & Zvarík M. (2017). Dehydrogenase activity in topsoil at windthrow plots in Tatra National Park. Central European Forestry Journal, 63(2–3), 91–96. DOI: 10.1515/forj-2017-0017.10.1515/forj-2017-0017
  21. Higuchi, T. (2006). Formation and biological degradation of lignins. In Advances in enzymology and related areas of molecular biology (pp. 207–283). Wiley-Blackwell. DOI: 10.1002/9780470122792.ch5.10.1002/9780470122792.ch54947343
  22. Javoreková, S. & Hoblik J. (2004). Enzymatic activities of microorganisms in the soil profile. http://agris.fao.org/agris-search/search.do?recordID=SK2005100075
  23. Jonášová, M., Vávrová, E. & Cudlín P. (2010). Western Carpathian mountain spruce forest after a windthrow: natural regeneration in cleared and uncleared areas. For. Ecol. Manag., 259(6), 1127–1134. DOI: 10.1016/j.foreco.2009.12.027.10.1016/j.foreco.2009.12.027
  24. Kutsch, W.L., Bahn, M. & Heinemeyer A. (2009). Soil carbon dynamics: An integrated methodology. Cambridge: Cambridge University Press.10.1017/CBO9780511711794
  25. Margesin, R., Minerbi, S. & Schinner F. (2014). Long-term monitoring of soil microbiological activities in two forest sites in South Tyrol in the Italian Alps. Microbes and Environments, 29(3), 277–285. DOI: 10.1264/jsme2.ME14050.10.1264/jsme2.ME14050
  26. Marín-Spiotta, E., Swanston, C.W., Torn, M.S., Silver, W.L. & Burton S.D. (2008). Chemical and mineral control of soil carbon turnover in abandoned tropical pastures. Geoderma, 143(1), 49–62. DOI: 10.1016/j.geoderma.2007.10.001.10.1016/j.geoderma.2007.10.001
  27. Miranda, I., Gominho, J., Mirra, I. & Pereira H. (2013). Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products, 41, 299–305. DOI: 10.1016/j.indcrop.2012.04.024.10.1016/j.indcrop.2012.04.024
  28. Nannipieri, P., Giagnoni, L., Landi, L. & Renella G. (2011). Role of phosphatase enzymes in soil. In Phosphorus in action (pp. 215–243). Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-15271-9_9.10.1007/978-3-642-15271-9_9
  29. Nicholson, D.J., Lea Vitt, A.T. & Francis R.C. (2014). A three-stage klason method for more accurate determinations of hardwood lignin content. Cellulose Chemistry and Technology, 48, 53–59.
  30. Pometto, A.L. & Crawford D.L. (1986). Effects of pH on lignin and cellulose degradation by Streptomyces viridosporus. Appl. Environ. Microbiol. 52(2), 246–250.10.1128/aem.52.2.246-250.1986
  31. Shaw, L.J. & Burns R.G. (2005). Enzyme activity profiles and soil quality. In Microbiological methods for assessing soil quality (pp. 156–180). UK: CABI Publishing.
  32. Schnürer, J. & Rosswall T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol. 43, 1256–1261.10.1128/aem.43.6.1256-1261.1982
  33. Straková, P., Anttila, J., Spetz, P., Kitunen, V., Tapanila, T. & Laiho R. (2010). Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil, 335(1–2), 501–520. DOI: 10.1007/s11104-010-0447-6.10.1007/s11104-010-0447-6
  34. Šantrůčková, H., Vrba, J., Picek, T. & Kopáček J. (2004). Soil biochemical activity and phosphorus transformations and losses from acidified forest soils. Soil Biol. Biochem., 36(10), 1569–1576. DOI: 10.1016/j.soilbio.2004.07.015.10.1016/j.soilbio.2004.07.015
  35. Špoljar, A., Barčić, D., Volf, T.P., Husnjak, S. & Ivica M. (2014). Chemical properties of the forest litter in Istria and the Croatian Littoral. Ekológia (Bratislava), 33(3), 242–251. DOI: 10.2478/eko-2014-0023.10.2478/eko-2014-0023
  36. Štursová, M., Žifčáková, L., Leigh, M.B., Burgess, R. & Baldrian P. (2012). Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol.Ecol., 80(3), 735–746. DOI: 10.1111/j.1574-6941.2012.01343.x.10.1111/j.1574-6941.2012.01343.x
  37. Tabatabai, M.A. & Bremner J.M. (1969). USE of p-Nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem., 1, 301–307.10.1016/0038-0717(69)90012-1
  38. Thevenot, M., Dignac, M.-F. & Rumpel C. (2010). Fate of lignins in soils: A review. Soil Biol. Biochem., 42(8), 1200–1211. DOI: 10.1016/j.soilbio.2010.03.017.10.1016/j.soilbio.2010.03.017
  39. Vávřová, P., Penttilä, T. & Laiho R. (2009). Decomposition of Scots pine fine woody debris in boreal conditions: Implications for estimating carbon pools and fluxes. For. Ecol. Manag., 257(2), 401–412. DOI: 10.1016/j.foreco.2008.09.017.10.1016/j.foreco.2008.09.017
  40. von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E. & Marschner B. (2007). SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem., 39(9), 2183–2207. DOI: 10.1016/j.soilbio.2007.03.007.10.1016/j.soilbio.2007.03.007
  41. Wieder, R.K. & Starr S.T. (1998). Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Commun. Soil Sci.Plant Anal., 29(7–8), 847–857. DOI: 10.1080/00103629809369990.10.1080/00103629809369990
  42. Yadav, K.R., Sharma, R.K. & Kothari R.M. (2002). Bioconversion of eucalyptus bark waste into soil conditioner. Bioresour. Technol. 81(2), 163–165. DOI: 10.1016/S0960-8524(01)00061-X.10.1016/S0960-8524(01)00061-X
DOI: https://doi.org/10.2478/eko-2018-0024 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 328 - 337
Published on: Dec 7, 2018
Published by: Institute of Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Jana Gáfriková, Peter Hanajík, Milan Zvarík, published by Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.