Have a personal or library account? Click to login
Water Surface Overgrowing of the Tatra’s Lakes Cover

Water Surface Overgrowing of the Tatra’s Lakes

Open Access
|Mar 2018

References

  1. Adrian, R., O’Reilly, C.M., Zagarese, H., Baines, S.B., Hessen, D.O., Keller, W., Livingstone, D.M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G.A. & Winder M. (2009). Lakes as sentinels of climate change. Limnol. Oceanogr., 54(6), 2283−2297. DOI: 10.4319/lo.2009.54.6_part_2.2283.10.4319/lo.2009.54.6_part_2.2283285482620396409
  2. Baumgart-Kotarba, M. & Kotarba A. (2001). Deglaciation in the Sucha Woda and Pańszczyca Valleys in the Polish High Tatras. Studia Geomorphologica Carpatho-Balcanica, 35, 7−38.
  3. Boltižiar, M. (2007). Štruktúra vysokohorskej krajiny Tatier. Nitra: ÚKE SAV.
  4. Dąbrowska, K. & Guzik M. (Eds.) (2015). Atlas of the Tatra Mountains – Abiotic Nature. Zakopane: Wydawnictwo Tatrzańskiego Parku Narodowego.
  5. Długosz, M. & Kapusta J. (2015). Debris flows. (Plate V.2). In K. Dąbrowska & M. Guzik (Eds.), Atlas of the Tatra Mountains – Abiotic Nature. Zakopane: Wydawnictwo Tatrzańskiego Parku Narodowego.
  6. Dyakowska, J. (1932). Analiza pyłkowa kilku torfowisk tatrzańskich. Acta Botanica Polonica, 9(3−4), 473−530.10.5586/asbp.1932.018
  7. Emmer, A., Merkl, S. & Mergili M. (2015). Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria. Geomorphology, 246, 602−616. DOI: 10.1016/j.geomorph.2015.06.032.10.1016/j.geomorph.2015.06.032
  8. Engel, Z., Mentlík, P., Braucher, R., Minár, J., Léanni, L. & Team A. (2015). Geomorphological evidence and 10Be exposure ages for the Last Glacial Maximum and deglaciation of the Veľká and Malá Studená dolina valleys in the High Tatra Mountains, central Europe. Quaternary Science Reviews, 124, 106−123. DOI: 10.1016/j.quascirev.2015.07.015.10.1016/j.quascirev.2015.07.015
  9. Falťan, V. & Bánovský M. (2008). Changes in land cover in the area of Vyšné Hágy-Starý Smokovec, impacted by the wind calamity in November 2004 (Slovakia). Moravian Geographical Reports, 16, 16–26.
  10. Feranec, J., Cebecauer, J. & Oťaheľ J. (2005). Photo-to-photo interpretation manual. Bratislava: Institute of Geography, Slovak Academy of Sciences, BIOPRESS.
  11. Gądek, B., Grabiec, M. & Kędzia S. (2015). Application of ground penetrating radar to identification of thickness and structure of sediments in postglacial lakes, illustrated with an example of the Mały Staw lake (the Karkonosze Mts.). Studia Geomorphologica Carpatho-Balcanica, 49, 5−13. DOI: 10.1515/sgcb-2015-0006.10.1515/sgcb-2015-0006
  12. Gallik, J. & Bolešová L. (2016). sUAS and their application in observing geomorphological processes. Solid Earth, 7, 1033–1042. DOI: 10.5194/se-7-1033-2016.10.5194/se-7-1033-2016
  13. Gerten, D. & Adrian R. (2000). Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol. Oceanogr., 45, 1058−1066. DOI: 10.4319/lo.2000.45.5.1058.10.4319/lo.2000.45.5.1058
  14. Gregor, V. & Pacl J. (2005). Hydrológia tatranských jazier. Acta Hydrologica Slovaca, 6(1), 161−187.
  15. Haladová, I. & Petrovič F. (2015). Classification of land use changes (model area: Nitra town). Ekológia (Bratislava), 34(3), 249−259. DOI: 10.1515/eko-2015-0024.10.1515/eko-2015-0024
  16. Hamerlík, L. & Bitušík P. (2009). The distribution of littoral chironomids along an altitudinal gradient in High Tatra Mountain lakes: Could they be used as indicators of climate change? Ann. Limnol. – International Journal of Limnology, 45, 145−156. DOI: 10.1051/limn/2009021.10.1051/limn/2009021
  17. Hreško, J., Kanásová, D., Bugár, G., Petrovič, F. & Mačutek J. (2012). Morphodynamic effect on lacustrine deposits in the High Tatra Mts. Ekológia (Bratislava), 31(4), 390−404. DOI: 10.4149/ekol_2012_03_390.10.4149/ekol_2012_03_390
  18. Hutchinson, S.M., Akinyemi, F.O., Mîndrescu, M., Begy, R. & Feurdean A. (2016). Recent sediment accumulation rates in contrasting lakes in the Carpathians (Romania): impacts of shifts in socio-economic regime. Regional Environmental Change, 16(2), 501−513. DOI: 10.1007/S10113-015-0764-7.10.1007/s10113-015-0764-7
  19. Irmler, R., Daut, G. & Mäusbacher R. (2006). A debris flow calendar derived from sediments of lake Lago di Braies (N. Italy). Geomorphology, 77, 69−78. DOI: 10.1016/j.geomorph.2006.01.013.10.1016/j.geomorph.2006.01.013
  20. Ives, J.D., Shrestha, R.B. & Mool P.K. (2010). Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment. Kathmandu: ICIMOD.10.53055/ICIMOD.521
  21. Kaczka, R., Lempa, M., Czajka, B., Janecka, K., Rączkowska, Z., Hreško, J. & Bugár G. (2015). The recent timberline changes in the Tatra Mountains: a case study of the Mengusovská valley (Slovakia) and the Rybi potok valley (Poland). Geographia Polonica, 88(2), 71−83. DOI: 10.7163/GPol.0016.10.7163/GPol.0016
  22. Kapusta, J., Stankoviansky, M. & Boltižiar M. (2010). Changes in activity and geomorphic effectiveness of debris flows in the High Tatra Mts. within the last six decades (on the example of the Velická dolina and Dolina Zeleného plesa valleys). Studia Geomorphologica Carpatho-Balcanica, 44, 5−34.
  23. Kapusta, J. (2016). Metodika rekonštrukcie brehovej čiary tatranských plies. Rigorózna práca, UKF Nitra.
  24. Kłapyta, P., Zasadni, J., Pociask-Karteczka, J., Gajda, A. & Franczak P. (2015). Late Glacial and Holocene paleoenvironmental records in the Tatra Mountains, East-Central Europe, based on lake, peat bog and colluvial sedimentary data: A summary review. Quaternary International, 415, 126−144. DOI: 10.1016/j.quaint.2015.10.049.10.1016/j.quaint.2015.10.049
  25. Kohler, T., Wehrli, A. & Jurek M. (Eds.) (2014). Mountains and climate change: A global concern. Sustainable Mountain Development Series. Bern: Centre for Development and Environment (CDE), Swiss Agency for Development and Cooperation (SDC), Geographica Bernensia.
  26. Kotarba, A. (1996). Osady jeziorne jako wskaźnik przemian środowiska naturalnego Tatr Wysokich. In A. Kotarba (Ed.), Z badań fizycznogeograficznych w Tatrach, Dokumentacja Geograficzna, 4 (pp. 33−47). Warszawa: IGiPZ PAN.
  27. Kotarba, A. (2004). Rola małej epoki lodowej w przekształcaniu śrdowiska Tatr. Warszawa: IGiPZ PAN.
  28. Krippel, E. (1963). Postglaciálny vývoj lesov Tatranského národného parku. Biologické práce, 9(40), 5−44.
  29. Kubinský, D., Weis, K., Fuska, J., Lehotský, M. & Petrovič F. (2015). Changes in retention characteristics of 9 historical artificial water reservoirs near Banská Štiavnica, Slovakia. Open Geosciences, 1, 1−8. DOI: 10.1515/geo-2015-0056.10.1515/geo-2015-0056
  30. Łajczak, A. (2014). Rola podłoża w rozwoju torfowisk w polskich Karpatach. Studia Limnologica et Telmatologica, 8(1), 19−36.
  31. Lukniš, M. (1973). Reliéf vysokých Tatier a ich predpolia. Bratislava: SAV.
  32. Mason, I., Guzkowska, M., Rapley, C. & Street-Perrott F. (1994). The response of lake levels and areas to climatic change. Clim. Change, 27, 161−197. DOI: 10.1007/BF01093590.10.1007/BF01093590
  33. Mîndrescu, M., Cristea, I. & Hutchinson S.M. (2010). Bathymetric and sedimentological changes of glacial Lake Ştiol, Rodna Masiff. Carpathian Journal of Earth Environmental Sciences, 5(1), 57−65.
  34. Necsoiu, M., Dinwiddie, C.L., Walter, G.R., Larsen, A. & Stothoff S.A. (2013). Multitemporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska. Environmental Research Letters, 8(2), 025007. DOI: 10.1088/1748–9326/8/2/025007.10.1088/17489326/8/2/025007
  35. Obidowicz, A. (1996). A Late glacial-Holocene history of the formation of vegetation belts in the Tatra Mts. Acta Paleobot., 36(2), 159−206.
  36. Owens, P. & Slaymaker O. (1994). Post-glacial temporal variability of sediment accumulation in a small alpine lake. Variability in Stream Erosion and Sediment Transport. Proceedings of the Canberra Symposium, December 1994. International Association of Hydrological Sciences, 224, 187−195.
  37. Rybníčková, E. & Rybníček K. (2005). Pollen and macroscopic analyses of sediments from two lakes in the High Tatra mountains, Slovakia. Veg. Hist. Archaeobot., 15, 345−356. DOI: 10.1007/s00334-006-0050-1.10.1007/s00334-006-0050-1
  38. Solár, J. (2013). Effect of climate change on Mountain Pine distribution in Western Tatra Mountains. In B.R. Singh (Ed.), Change - Realities, Impacts Over Ice Cap, Sea Level and Risks, pp. 437−458. Rijeka: InTech. DOI: 10.5772/54724.10.5772/54724
  39. Solár, J. & Janiga M. (2013). Long-term changes in Dwarf Pine (Pinus mugo) cover in the High Tatra Mountains, Slovakia. Mt. Res. Dev., 33(1), 51−62. DOI: 10.1659/MRD-JOURNAL-D-12-00079.1.10.1659/MRD--D-12-00079.1
  40. Strozzi, T., Wiesmann, A., Kääb, A., Joshi, S. & Mool P. (2012). Glacial lake mapping with very high resolution satellite SAR data. Natural Hazards and Earth System Sciences, 12, 2487−2498. DOI: 10.5194/nhess-12-2487-2012.10.5194/nhess-12-2487-2012
  41. Šporka, F., Štefková, E., Bitušík, P., Thompson, A.R., Agustí-Panareda, A., Appleby, P.G., Grytnes, J.A., Kamenik, C., Krno, I., Lami, A., Rose, N. & Shilland N.E. (2002). The paleolimnological analysis of sediments from High Mountain Lake Nižné Terianske pleso in the High Tatras (Slovakia). J. Paleolimnol., 28, 95−109. DOI: 10.1023/A:1020376003123.10.1023/A:1020376003123
  42. Zasadni, J. & Kłapyta P. (2014). The Tatra Mountains during the Last Glacial Maximum. Journal of Maps, 10(3), 440−456. DOI: 10.1080/17445647.2014.885854.10.1080/17445647.2014.885854
DOI: https://doi.org/10.2478/eko-2018-0002 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 11 - 23
Published on: Mar 20, 2018
Published by: Institute of Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Juraj Kapusta, Juraj Hreško, František Petrovič, Dávid Tomko-Králo, Jozef Gallik, published by Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.