Have a personal or library account? Click to login
Proportion of Root Production in Several Temperate Grasslands of Central Europe Cover

Proportion of Root Production in Several Temperate Grasslands of Central Europe

By: Karel Fiala,  Ivan Tůma and  Petr Holub  
Open Access
|Aug 2014

References

  1. Andrzejewska, L. (1991). Root production of some grass communities on peat soil in river valleys of Biebrza and Narew. Polish Ecological Studies, 17, 63-72.
  2. Bakker, M.R., Augusto, L. & Achat D.L. (2006). Fine root distribution of trees and understory in mature stands of marine pine (Pinuspinaster) on dry and humid sites. Plant Soil, 286, 37-51. DOI: 10.1007/s11104-006-9024-4.10.1007/s11104-006-9024-4
  3. Fay, P.A., Kaufman, D.M., Nippert, J.B., Carlisle, J.D. & Harper C.W. (2008). Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology, 14, 1600-1608. DOI: 10.1111/j.1365-2486.2008.01605.x.10.1111/j.1365-2486.2008.01605.x
  4. Fiala, K. (1993). Underground biomass in meadow stands. In M. Rychnovská (Ed.), Functioning of meadow ecosystems (pp. 133-153). Praha: Academia.
  5. Fiala, K. (1997). Underground plant biomass of grassland communities in relation to mowing intensity. Acta Scien-tarium Naturalium Academiae Scientarium Bohemicae Brno, 31, 1-54.
  6. Fiala, K. (1998). Variation in belowground biomass of grass stands in deforested areas affected by air pollution in the Beskydy Mts. Ekológia (Bratislava), 17(Suppl. 1), 256-278.
  7. Fiala, K. (2000). Root and rhizome growth of grasses Calamagrostis arundinacea and C. villosa on deforested sites in response to pollution and climatic impacts. Biologia, 55, 91-98.
  8. Fiala, K. (2001). The role of root system of Calamagrostis epigejos in its successful expansion in alluvial meadows. Ekológia (Bratislava), 20, 292-300.
  9. Fiala, K., Záhora, J., Tûma, I. & Holub P. (2004). Importance of plant matter accumulation, nitrogen uptake and utilization in expansion of tall grasses (Calamagrostis epigejos and Arrhenatherum elatius) into acidophilous dry grassland. Ekológia (Bratislava), 23, 225-240.
  10. Fiala, K., Tûma, I. & Holub P. (2009). Effect of manipulated rainfall on root production and plant belowground dry mass of different grassland ecosystems. Ecosystems, 12, 906-914. DOI: 10.1007/s10021-009-9264-2.10.1007/s10021-009-9264-2
  11. Fiala, K. (2010). Belowground plant biomass of grassland ecosystems and its variation according to ecological factors. Ekológia (Bratislava), 29, 182-206. DOI: 10.4149/ekol_2010_02_182.10.4149/ekol_2010_02_182
  12. Fiala, K., Tûma, I. & Holub P. (2012). Interannual variation in root production in grasslands affected by artificially modified amount ofrainfall. The Scientific World Journal, Article ID 805298, 10 pages. DOI: 10.1100/2012/805298.10.1100/2012/805298335356322629201
  13. Fitter, A.H., Graves, J.D., Self, G.K. & Brown T.K. (1998). Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia, 114, 2030. DOI: 10.1007/s004420050415.10.1007/s00442005041528307553
  14. Gill, R.A. & Jackson R.B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytol., 147, 13-31. DOI: 10.1046/j.1469-8137.2000.00681.x.10.1046/j.1469-8137.2000.00681.x
  15. Gill, R.A., Kelly, R.H., Parton, W.J., Day, K.A., Jackson, R.B., Morgan, J.A., Scurlock, J.M.O., Tieszen, L.L., Castle, J.V., Okima, D.S. & Zhang X.S. (2002): Using simple environmental variables to estimate belowground productivity in grasslands. Glob. Ecol. Biogeogr., 11, 79-86. DOI: 10.1046/j.1466-822X.2001.00267.x.10.1046/j.1466-822X.2001.00267.x
  16. Hayes, D.C. & Seastedt T.R. (1987). Root dynamics of tallgrass prairie in wet and dry years. Can. J. Bot., 65, 787-791. DOI: 10.1139/b87-105.10.1139/b87-105
  17. Holub, P. (2002). The expansion of Calamagrostis epigejos into alluvial meadows: comparison of aboveground biomass in relation to water regimes. Ekológia (Bratislava), 21, 27-37.
  18. Holub, P., Fabšičová, M., Tûma, I., Záhora, J. & Fiala K. (2013a). Effects of artificially varying amounts of rainfall on two semi-natural grassland types. J. Veg. Sci., 24(3), 518-529. DOI: 10.1111/j.1654-1103.2012.01487.x.10.1111/j.1654-1103.2012.01487.x
  19. Holub, P., Tûma, I. & Fiala K. (2013b). Effect of fertilization on root growth of submontane Polygono-Cirsietum meadow. Plant, Soil and Environment, 59, 342-347.10.17221/162/2013-PSE
  20. Hrabe, F., Straka, J. & Rosická L. (2002). Produkční a strukturální zmeny polopŕirozeného a nove setého lučního společenstva v oblasti CHKO Žďárské vrchy. In V. Krajčovič. (Ed.), Ekológia trávneho porastu VI. (pp. 220-227). Banská Bystrica: Výskumný ústav trávnych porastov a horského poľnohospodárstva.
  21. Hui, D. & Jackson R.B. (2006). Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol., 169, 85-93. DOI: 10.1111/j.1469-8137.2005.01569.x.10.1111/j.1469-8137.2005.01569.x16390421
  22. Ibrahim, L., Proe, M.F. & Cameron A.D. (1997). Main effects of nitrogen supply and drought stress upon whole-plant carbon allocation in poplar. Can. J. For. Res., 27, 1413-1419. DOI: 10.1139/x97-080.10.1139/x97-080
  23. Jakrlová, J. (1971). Flooded meadow communities. An analysis of productivity in a dry year. Folia Geobot., 6, 1-27.10.1007/BF02851836
  24. Jakrlová, J. (1996). Variability of aboveground production of Calamagrostis villosa in localities exposed to emissions in the region of the Beskydy Mts. In K. Fiala (Ed.), Grass ecosystems of deforested areas in the Beskydy Mts (pp. 75-82). Brno: ASCR, Institute of Landscape Ecology.
  25. Köchy, M. & Wilson S.D. (2004). Semiarid grassland responses to short-term variation in water availability. Plant Ecol., 174, 197-203. DOI: 10.1023/B:VEGE.0000049098.74147.57.10.1023/B:VEGE.0000049098.74147.57
  26. Koppisch, D. (1994). Nährstoffhaushalt un Populationsdynamik von Calamagrostis villosa (Chais.) J.F. Gmel, einer Rhizompflanze des Unterwuchses von Fichtenwäldern. Bayreuther Forum Ökologie, 12, 1-187.
  27. Melillo, J.M., McGuire, A.D., Kicklighter, A.W., Moore, B.I., Vorosmary, C.J. & Schloss A.L. (1993). Global climate-change and terrestrial net primary production. Nature, 363, 234-240. DOI: 10.1038/363234a0.10.1038/363234a0
  28. Milchunas, D.G. (2012). Biases and errors associated with different root production methods and their effects on field estimates of belowground net primary production. In S. Mancuso (Ed.), Measuring roots: An updatedapproach (pp. 303-339). Berlin: Springer. DOI: 10.1007/978-3-642-22067-8_16.10.1007/978-3-642-22067-8_16
  29. Ni, J. (2004). Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol., 174, 217-234. DOI: 10.1023/B:VEGE.0000049097.85960.10.10.1023/B:VEGE.0000049097.85960.10
  30. Pilát, A. (1969). Underground dry weight in the grassland communities of Arrhenatheretum elatioris alopecuretosum pratensis R. Tx. 1937 and Mesobrometum erecti stipetosum Vicherek 1960. Folia Geobot., 4, 225-234.10.1007/BF02854745
  31. Pyšek, P. (1993). What do we know about Calamagrostis villosa? A review of the species behaviour in secondary habitats. Preslia, 63, 9-20.
  32. Qaderi, M.M., Kurepin, L.V. & Reid D.M. (2006). Growth and physiological responses of canola (Brasica napus) to three components of global climate changes: Temperature, carbon dioxide and drought. Physiologia Plantarum, 128, 710-721. DOI: 10.1111/j.1399-3054.2006.00804.x.10.1111/j.1399-3054.2006.00804.x
  33. Risch, A.C., Jurgensen, M.F. & Frank D.A. (2007). Effects of grazing and soil micro-climate on decomposition rates in a spatio-temporally heterogeneous grassland. Plant Soil, 298, 191-201. DOI: 10.1007/s11104-007-9354-x.10.1007/s11104-007-9354-x
  34. Rychnovská, M. (1983). Grasslands: A multifunctional link between natural and man-made ecosystems. Ekológia (ČSSR), 2, 337-345.
  35. Stanton, N.L. (1988). The underground in grasslands. Annu. Rev. Ecol. Syst., 19, 573-589. DOI: 10.1146/annurev. es.19.110188.003041.
  36. Titlyanova, A.A., Romanova, I.P., Kosykh, N.P. & Mironycheva-Tokareva N.P. (1999). Pattern and process in above-ground and below-ground components of grassland ecosystems. J. Veg. Sci., 10, 307-320. DOI: 10.2307/3237060.10.2307/3237060
  37. Tomaškin, J. & Tomaškinová J. (2012). The ecological and environmental functions of grass ecosystems and their importance in the elimination of degradation processes in agricultural landscape. Carpathian Journal of Earth Environmental Sciences, 7, 71-78.
  38. Xu, X., Niu, Sh., Sherry, R.A., Zhou, X. & Zhou J. (2012). Interannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie. Global Change Biology, 18, 1648-1656. DOI: 10.1111/j.1365-2486.2012.02651.x.10.1111/j.1365-2486.2012.02651.x
  39. Yahdjian, L. & Sala O.E. (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 87, 952-962. DOI: 10.1890/0012-9658(2006)87[952:VSCPPR]2.0.CO.
DOI: https://doi.org/10.2478/eko-2014-0022 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 232 - 241
Published on: Aug 21, 2014
Published by: Institute of Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Karel Fiala, Ivan Tůma, Petr Holub, published by Institute of Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.