Have a personal or library account? Click to login
Perspectives for the application of computer models to forest dynamics forecasting in bieszczadzki national park (Poland) Cover

Perspectives for the application of computer models to forest dynamics forecasting in bieszczadzki national park (Poland)

Open Access
|Apr 2014

References

  1. Balzter, H., Braun, P.W. & Kohler W. (1998). Cellular automata models for vegetation dynamics. Ecol. Model., 107, 113−125. DO I: 10.1016/S0304-3800(97)00202-0.
  2. Botkin, D.B., Janak, J.F. & Wallis J.R. (1972). Some ecological consequences of a computer model of forest growth. J. Ecol., 60, 849−872. http://www.jstor.org/stable/225857010.2307/2258570
  3. Brzeziecki, B. (1999). Tree stand ecological model. Rules of construction, parameterization, examples of use (in Polish). Warszawa.
  4. Bugmann, H. (1994). On the ecology of mountainous forests in a changing climate: a simulation study. PhD. thesis No. 10638, Swiss Federal Institute of Technology Zurich, Switzerland.
  5. Bugmann, H. (2001). A review of forest gap models. Climatic Change 51. Kluwer Academic Publishers.
  6. Colasanti, R.L. & Grime J.P. (1993). Resource dynamics and vegetation processes: a deterministic model used two-dimensional cellurar automata. Funct. Ecol., 7, 169−176. http://www.jstor.org/stable/238988310.2307/2389883
  7. Dunkerley, D.L. (1999). Banded chenopod shrub lands of arid Australia: modeling responses to inter annual rainfall variability with cellular automata. Ecol. Model., 121, 127−138. DO I: 10.1016/S0304-3800(99)00088-5.
  8. Frąk, R., Kozak, I., Widelska, E. & Kozak H. (2009). Prognosis of landscape changes in the basin of the Bojarski stream with application of CELLAUT model (in Ukrainian). In Ecosystems of upper part of Prut river basin (pp. 246−252). Regional Conference, 15-17. 05. 2009. Lvov: Voroxta.
  9. Gawrońska, G. (2000): An influence of atmospheric pollution upon forests of the Carpathian Region (in Polish). Rocznik Ochrony Środowiska, 2, 195−204.
  10. Hassel, M.P., Comins, H.N. & May R.M. (1991). Spatial structure and chaos in insect population dynamics. Nature, 353, 255−258. DO I: 10.1038/353255a0.
  11. Karafyllidis, I. & Thanailakis A. (1997). A model for predicting forest fire spreading using cellular automata. Ecol. Model., 99, 87−97. DO I: 10.1016/S0304-3800(96)01942-4.
  12. Kozak, I. & Menshutkin V.V. (1999). Computer simulations of forest Ecosystems Dynamics. Biology Bulletin, 26(6), 586−592.
  13. Kozak, I. & Menshutkin V. (2000a). Possibilities of application of computer modelling for prediction of tree stand succesion dynamics on the example of fir-beech tree stand in the Bieszczady Mountains. Forestry (Poland), 3, 113−122.
  14. Kozak, I. & Menshutkin V. (2000b). An investigation of forest succesion in Bieszczady Mountains using a computer models. Folia Forestalica Polonica, Series A - Forestry, 42, 67−81.
  15. Kozak, I. & Menshutkin V. (2001). Prediction of beech forest succesion in Bieszczady Mountains using a computer model. J. For. Sci. (Prague), 47, 333−339.
  16. Kozak, I., Menshutkin, V., Jóźwina, M. & Potaczała G. (2002). Computer simulation of fir forest dynamics in the Bieszczady Mountains in response to climate change. J. For. Sci. (Prague), 48, 425−431.10.17221/11909-JFS
  17. Kozak, I., Menshutkin, V., Ferchmin, M., Potaczała, G., Jóźwina, M., Kozak, O. & Seńko Z. (2003a). Prognozowanie zmian lasu sosnowego w obszarze ochrony ścisłej Nart w Kampinoskim Parku Narodowym z wykorzystaniem modelu FOR KOM E. Parki Narodowe i Rezerwaty Przyrody, 22(4), 483−497.
  18. Kozak, I., Menshutkin, V., Jóźwina, M. & Potaczała G. (2003b). Modelling of beech forest dynamics in the Bieszczady Mountains in response to climate change. Ekológia (Bratislava), 22(2), 152−161.
  19. Kozak, I., Menshutkin, V.V. & Klekowski R.Z. (2003c). Modeling of landscape elements (in Polish). Lublin: Towarzystwo Naukowe KUL.
  20. Kozak, I., Menshutkin, V., Parpan, V., Shparyk, Yu., Parpan, T., Viter, R., Kozak O. & Seńko Z. (2005). Computer simulations of natural beech forest dynamics in the Boberka river basin in the Ukrainian Beskids. Natural Forests in the Temperate Zone of Europe - Values and Utilization (pp. 121−129). Birmensdorf: Published by Swiss Federal Research Institute.
  21. Kozak, I., Chłódek, D., Zawadzki, A., Kozak, H. & Potaczała G. (2007a). Conversion simulation of spruce stands in the Bieszczady mountains with the aid of FOR KOM E model (in Polish). Leśne Prace Badawcze, 2, 7−26.
  22. Kozak, I., Parpan, V., Potaczała, G., Kozak, H. & Zawadzki A. (2007b). Natural forest regeneration in spruce monocultures in the Ukrainian Beskids - prognosis by FOR KOM E model. J. For. Sci. (Prague), 53(4), 162−169.10.17221/2355-JFS
  23. Kucharzyk, S. (2005). An influence of the exposition and elevation above sea level upon the dynamics of forest stands at the upper timberline at Bieszczadzki National Park (in Polish). Roczniki Bieszczadzkie, 13, 173−201.
  24. Kucharzyk, S. & Sugiero D. (2007). A differentiation of the dynamics of reforestation processes in beech stands of Bieszczady, depending on the slope exposition and elevation (in Polish). Sylwan, 7, 29−38.
  25. Leemans, R. & Prentice I.C. (1989). FORSKA, a general forest succesion model. Uppsala: Meddelanden fran Vaxbiologiska Institutionen.
  26. Lek, S. & Guegan J.F. (1999). Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model., 120, 65-73. DO I: 10.1016/S0304-3800(99)00092-7.10.1016/S0304-3800(99)00092-7
  27. McGarigal, K. & Marks B.J. (1995). FRAGSTATS . Spatial analysis program for quantifying landscape structure. USDA For. Serv. Gen. Tech. Rep. PNW-GTR-351.10.2737/PNW-GTR-351
  28. Michalik, S. & Szary A. (1997). Forest communities of Bieszczadzki National Park (in Polish). Monografie Bieszczadzkie 1.
  29. Pacala, S.W., Canham, C.D. & Silander J.A.J. (1993). Forest models defined by field measurements: I. The design of a northeastern forest simulator. Can. J. For. Res., 23, 1980−1988. DO I: 10.1139/x93-249.
  30. Prentice, I.C. & Leemans R. (1990). Pattern and process and the dynamics of forest structure: a simulation approach. J. Ecol., 78, 340−355. http://www.jstor.org/stable/226111610.2307/2261116
  31. Pretzsch, H., Biber, P. & Durský J. (2002). The single tree-based stand simulator SILVA : construction, application and evaluation. For. Ecol. Manag., 162, 3-21. DO I: 10.1016/S0378-1127(02)00047-6.10.1016/S0378-1127(02)00047-6
  32. Seńko, Z. & Jóźwina M. (2004). CELAUT model perspective in landscape ecology (in Ukrainian). Visnyk of L’viv University. Series Geographical, 31, 333−339.
  33. Shugart, H.H. & West D.C. (1977). Development of an Appalachian deciduos forest model and its application to assessment of the impact of the chestnut blight. J. Environ. Manag., 5, 161−179.
  34. Urban, D.L. (1990). A versatile model to simulate forest pattern: a user’s guide to ZELIG version 1.0. Charlottesville, VA : University of Virginia, Environmental Sciences Department.
  35. Urban, D.L., Bonan, G.B., Smith, T.M. & Shugart H.H. (1991). Spatial applications of gap models. For. Ecol. Manag., 42, 95−110. DO I: 10.1016/0378-1127(91)90067-6.
DOI: https://doi.org/10.2478/eko-2014-0003 | Journal eISSN: 1337-947X | Journal ISSN: 1335-342X
Language: English
Page range: 16 - 25
Published on: Apr 12, 2014
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Ihor Kozak, Kajetan Perzanowski, Stanisław Kucharzyk, Krystyna Przybylska, Stanisław Zięba, Rafał Frąk, Leszek Bujoczek, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.