Have a personal or library account? Click to login
A systematic review of machine learning applications in hotel occupancy forecasting Cover

A systematic review of machine learning applications in hotel occupancy forecasting

Open Access
|Dec 2025

References

  1. Alotaibi, E. (2020). Application of Machine Learning in the Hotel Industry: A Critical Review. Journal of Association of Arab Universities for Tourism and Hospitality, 18(3), 78–96. https://doi.org/10.21608/jaauth.2020.38784.1060
  2. Ampountolas, A., & Legg, M. (2023). Predicting daily hotel occupancy: A practical application for independent hotels. Journal of Revenue and Pricing Management, 23(2023), 197-205. https://doi.org/10.1057/s41272-023-00445-7
  3. Ampountolas, A., & Legg, M. P. (2021). A segmented machine learning modeling approach of social media for predicting occupancy. International Journal of Contemporary Hospitality Management, 33(6), 2001–2021.
  4. Binesh, F., Belarmino, A., & Raab, C. (2021). A metaanalysis of hotel revenue management. Journal of Revenue and Pricing Management, 20(5), 546-558. https://doi.org/10.1057/s41272-020-00268-w
  5. Booth, A., Martyn-St James, M., Clowes, M., & Sutton, A. (2021). Systematic approaches to a successful literature review. Sagepub.
  6. Brougham, D., & Haar, J. (2018). Smart Technology, Artificial Intelligence, Robotics, and Algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239–257. https://doi.org/10.1017/jmo.2016.55
  7. Caicedo-Torres, W., & Payares, F. (2016, November 18-20). A machine learning model for occupancy rates and demand forecasting in the hospitality industry (Conference Session). Ibero-American Conference on Artificial Intelligence, Montevidéu.
  8. Capdevila-Torres, M., Ivanov, S., Garrod, B., & Hernandez-Maskivker, G. (2023). Open Access Publishing inTourism and Hospitality Research. Tourism, 71(2), 228–251. https://doi.org/10.37741/t.71.2.1
  9. Charoenwong, B., & Feng, G. (2016). Does higher frequency data always help to predict longer horizon volatility?. Journal of Risk, Forthcoming, 19(5), 55-75.
  10. Chen, S., Ngai, E. W. T., Ku, Y., Xu, Z., Gou, X., & Zhang, C. (2023). Prediction of hotel booking cancellations: Integration of machine learning and probability model based on interpretable feature interaction. Decision Support Systems, 170(2023), 113959. https://doi.org/10.1016/j.dss.2023.113959
  11. Cho, S., Pekgün, P., Janakiraman, R., & Wang, J. (2024). The Competitive Effects of Online Reviews on Hotel Demand. Journal of Marketing, 88(2), 40–60.
  12. Choi, J.-G., Zhang, Y.-W., Nadzri, N. I. B. M., Baymuminova, N., & Xu, S.-N. (2022). A Review of Forecasting Studies for the Hotel Industry: Focusing on results, contributions and limitations. GLOBAL BUSINESS FINANCE REVIEW, 27(5), 65–82. https://doi.org/10.17549/gbfr.2022.27.5.65
  13. Czerwinska, U. (2022). Interpretability of Machine Learning Models: How Can One Explain Machine Learning Models?. In R. Egger (Ed.), Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications (pp. 275–303). Springer.
  14. Denizci Guillet, B., & Mohammed, I. (2015). Revenue management research in hospitality and tourism: A critical review of current literature and suggestions for future research. International Journal of Contemporary Hospitality Management, 27(4), 526–560. https://doi.org/10.1108/IJCHM-06-2014-0295
  15. Doborjeh, Z., Hemmington, N., Doborjeh, M., & Kasabov, N. (2022). Artificial intelligence: A systematic review of methods and applications in hospitality and tourism. International Journal of Contemporary Hospitality Management, 34(3), 1154–1176. https://doi.org/10.1108/IJCHM-06-2021-0767
  16. Dowlut, N., & Gobin-Rahimbux, B. (2023). Forecasting resort hotel tourism demand using deep learning techniques – A systematic literature review. Heliyon, 9(7), e18385. https://doi.org/10.1016/j.heliyon.2023.e18385
  17. Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(2021), 1–37.
  18. Erdem, M., & Jiang, L. (2016). An overview of hotel revenue management research and emerging key patterns in the third millennium. Journal of Hospitality and Tourism Technology, 7(3), 300–312. https://doi.org/10.1108/JHTT-10-2014-0058
  19. Fiig, T., Weatherford, L. R., & Wittman, M. D. (2019). Can demand forecast accuracy be linked to airline revenue? Journal of Revenue and Pricing Management, 18(4), 291–305. https://doi.org/10.1057/s41272-018-00174-2
  20. Font, X., Cannon, M., Woosnam, K., & Wu, J. S. (2024). Open science for sustainable tourism. Journal of Sustainable Tourism, 32(1), 1–7. https://doi.org/10.1080/09669582.2023.2295814
  21. Gerlings, J., Shollo, A., & Constantiou, I. (2020, January 5-8). Reviewing the need for explainable artificial intelligence (xAI) (Conference Session). 54th Hawaii International Conference on System Sciences, Grand Wailea, Maui, Hawaii.
  22. Gregory, A. (2012). Asset optimization according to customer preference: The necessary evolution of revenue management. Journal of Tourism Research & Hospitality, 1(3), 1-2. https://doi.org/10.4172/2324-8807.1000e109
  23. Guerra-Montenegro, J., Sanchez-Medina, J., Laña, I., Sanchez-Rodriguez, D., Alonso-Gonzalez, I., & Del Ser, J. (2021). Computational Intelligence in the hospitality industry: A systematic literature review and a prospect of challenges. Applied Soft Computing, 102(2021), 107082. https://doi.org/10.1016/j.asoc.2021.107082
  24. Helmold, M. (2020). Total revenue management (TRM). In M. Helmond (Ed.), Total Revenue Management (TRM) Case Studies, Best Practices and Industry Insights (pp. 1-12). Springer International Publishing. https://doi.org/10.1007/978-3-030-46985-6
  25. Huang, L., Li, C., & Zheng, W. (2023). Daily hotel demand forecasting with spatiotemporal features. International Journal of Contemporary Hospitality Management, 35(1), 26–45. https://doi.org/10.1108/IJCHM-12-2021-1505
  26. Huang, L., & Zheng, W. (2021). Novel deep learning approach for forecasting daily hotel demand with agglomeration effect. International Journal of Hospitality Management, 98(2021), 103038.
  27. Huang, L., & Zheng, W. (2023). Hotel demand forecasting: A comprehensive literature review. Tourism Review, 78(1), 218–244. https://doi.org/10.1108/TR-07-2022-0367
  28. Ivanov, S., & Zhechev, V. S. (2011). Hotel Revenue Management - A Critical Literature Review. SSRN Electronic Journal, 60(2), 175-197. https://doi.org/10.2139/ssrn.1977467
  29. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
  30. Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. International Journal of Hospitality Management, 107(2022), 103317.
  31. Koupriouchina, L., Van Der Rest, J.-P., & Schwartz, Z. (2014). On revenue management and the use of occupancy forecasting error measures. International Journal of Hospitality Management, 41(2014), 104–114. https://doi.org/10.1016/j. ijhm.2014.05.002
  32. Kozlovskis, K., Liu, Y., Lace, N., & Meng, Y. (2023). APPLICATION OF MACHINE LEARNING ALGORITHMS TO PREDICT HOTEL OCCUPANCY. Journal of Business Economics and Management, 24(3), 594–613. https://doi.org/10.3846/jbem.2023.19775
  33. Lee, M., Mu, Xinpan, & Zhang, Yiqiao. (2020). A MACHINE LEARNING APPROACH TO IMPROVING FORECASTING ACCURACY OF HOTEL DEMAND: A COMPARATIVE ANALYSIS OF NEURAL NETWORKS AND TRADITIONAL MODELS. Issues In Information Systems, 21(1), 12–21. https://doi.org/10.48009/1_iis_2020_12-21
  34. Lv, H., Shi, S., & Gursoy, D. (2022). A look back and a leap forward: A review and synthesis of big data and artificial intelligence literature in hospitality and tourism. Journal of Hospitality Marketing & Management, 31(2), 145–175. https://doi.org/10.10 80/19368623.2021.1937434
  35. Mariani, M., & Baggio, R. (2022). Big data and analytics in hospitality and tourism: A systematic literature review. International Journal of Contemporary Hospitality Management, 34(1), 231–278. https://doi.org/10.1108/IJCHM-03-2021-0301
  36. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339(2009), 1-8. https://doi.org/10.1136/bmj. b2535
  37. Mongan, J., Moy, L., & Kahn, C. E. (2020). Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiology: Artificial Intelligence, 2(2), e200029. https://doi.org/10.1148/ryai.2020200029
  38. Nannelli, M., Capone, F., & Lazzeretti, L. (2023). Artificial intelligence in hospitality and tourism. State of the art and future research avenues. European Planning Studies, 31(7), 1325–1344. https://doi.org/10.1080/09654313.2023.2180321
  39. Navarro, C. L. A., Damen, J. A., Takada, T., Nijman, S. W., Dhiman, P., Ma, J., Collins, G. S., Bajpai, R., Riley, R. D., & Moons, K. G. (2021). Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic review. British Medical Journal, 375(2281), 1-9.
  40. Osei, B. A., Ragavan, N. A., & Mensah, H. K. (2020). Prospects of the fourth industrial revolution for the hospitality industry: A literature review. Journal of Hospitality and Tourism Technology, 11(3), 479–494.
  41. Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—A web and mobile app for systematic reviews. Systematic Reviews, 5(1), 210. https://doi.org/10.1186/s13643-016-0384-4
  42. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseerm, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, E., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A.,, Thomas, J., Tricco, A. C., Welch, V. A., Whiting, & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372(71), 1-9. https://doi.org/10.1136/bmj.n71
  43. Pahlevan Sharif, S., Mura, P., & Wijesinghe, S. N. R. (2019). Systematic Reviews in Asia: Introducing the “PRISMA” Protocol to Tourism and Hospitality Scholars. In S. Rezaei (Ed.), Quantitative Tourism Research in Asia: Current Status and Future Directions (pp. 13–33). Springer Nature Singapore. https://doi.org/10.1007/978-981-13-2463-5_2
  44. Pan, B., & Yang, Y. (2017). Forecasting Destination Weekly Hotel Occupancy with Big Data. Journal of Travel Research, 56(7), 957–970. https://doi.org/10.1177/0047287516669050
  45. Pereira, L. N., & Cerqueira, V. (2022). Forecasting hotel demand for revenue management using machine learning regression methods. Current Issues in Tourism, 25(17), 2733–2750. https://doi.or g/10.1080/13683500.2021.1999397
  46. Phillips, P., Barnes, S., Zigan, K., & Schegg, R. (2017). Understanding the impact of online reviews on hotel performance: An empirical analysis. Journal of Travel Research, 56(2), 235–249.
  47. Phumchusri, N., & Ungtrakul, P. (2020). Hotel daily demand forecasting for high-frequency and complex seasonality data: A case study in Thailand. Journal of Revenue and Pricing Management, 19(2020), 8–25.
  48. Schwartz, Z., Ma, J., & Webb, T. (2023). The MSapeMER: A symmetric, scale-free and intuitive forecasting error measure for hospitality revenue management. International Journal of Contemporary Hospitality Management, 36(6), 2035-2048. https://doi.org/10.1108/IJCHM-01-2023-0088
  49. Schwartz, Z., Uysal, M., Webb, T., & Altin, M. (2016). Hotel daily occupancy forecasting with competitive sets: A recursive algorithm. International Journal of Contemporary Hospitality Management, 28(2), 267–285. https://doi.org/10.1108/IJCHM-10-2014-0507
  50. Tang, C. M. F., King, B., & Pratt, S. (2017). Predicting hotel occupancies with public data: An application of OECD indices as leading indicators. Tourism Economics, 23(5), 1096–1113. https://doi.org/10.1177/1354816616666670
  51. Tang, X., Li, X., Ding, Y., Song, M., & Bu, Y. (2020). The pace of artificial intelligence innovations: Speed, talent, and trial-and-error. Journal of Informetrics, 14(4), 101094. https://doi.org/10.1016/j.joi.2020.101094
  52. Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8), 1352–1362. https://doi.org/10.1057/jors.2014.103
  53. Tsang, W. K., & Benoit, D. F. (2020). Gaussian processes for daily demand prediction in tourism planning. Journal of Forecasting, 39(3), 551–568. https://doi.org/10.1002/for.2644
  54. Weatherford, L. R., & Bodily, S. E. (1992). A taxonomy and research overview of perishable asset revenue management: Yield management, overbooking, and pricing. Operations research, 40(5), 831-844. https://doi.org/10.1287/opre.40.5.831
  55. Wulff, K., & Finnestrand, H. (2023). Creating meaningful work in the age of AI: explainable AI, explainability, and why it matters to organizational designers. AI & SOCIETY, 39(2023), 1843–1856.
  56. Younis, H., Sundarakani, B., & Alsharairi, M. (2022). Applications of artificial intelligence and machine learning within supply chains:systematic review and future research directions. Journal of Modelling in Management, 17(3), 916–940. https://doi.org/10.1108/JM2-12-2020-0322
  57. Zhang, C., Wang, S., Sun, S., & Wei, Y. (2020). Knowledge mapping of tourism demand forecasting research. Tourism Management Perspectives, 35(2020), 100715. https://doi.org/10.1016/j.tmp.2020.100715
  58. Zhang, D., & Niu, B. (2024). Leveraging online reviews for hotel demand forecasting: A deep learning approach. Information Processing & Management, 61(1), 103527.
  59. Zhang, D., & Wu, C. (2023). What online review features really matter? An explainable deep learning approach for hotel demand forecasting. Journal of the Association for Information Science and Technology, 74(9), 1100–1117.
DOI: https://doi.org/10.2478/ejthr-2025-0022 | Journal eISSN: 2182-4924 | Journal ISSN: 2182-4916
Language: English
Page range: 311 - 327
Submitted on: Dec 18, 2024
|
Accepted on: Mar 28, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Ismael Gómez-Talal, Mana Azizsoltani, Jared Bischoff, Kasra Ghaharian, Ashok Singh, published by Polytechnic Institute of Leiria
This work is licensed under the Creative Commons Attribution 4.0 License.