References
- Alotaibi, E. (2020). Application of Machine Learning in the Hotel Industry: A Critical Review. Journal of Association of Arab Universities for Tourism and Hospitality, 18(3), 78–96. https://doi.org/10.21608/jaauth.2020.38784.1060
- Ampountolas, A., & Legg, M. (2023). Predicting daily hotel occupancy: A practical application for independent hotels. Journal of Revenue and Pricing Management, 23(2023), 197-205. https://doi.org/10.1057/s41272-023-00445-7
- Ampountolas, A., & Legg, M. P. (2021). A segmented machine learning modeling approach of social media for predicting occupancy. International Journal of Contemporary Hospitality Management, 33(6), 2001–2021.
- Binesh, F., Belarmino, A., & Raab, C. (2021). A metaanalysis of hotel revenue management. Journal of Revenue and Pricing Management, 20(5), 546-558. https://doi.org/10.1057/s41272-020-00268-w
- Booth, A., Martyn-St James, M., Clowes, M., & Sutton, A. (2021). Systematic approaches to a successful literature review. Sagepub.
- Brougham, D., & Haar, J. (2018). Smart Technology, Artificial Intelligence, Robotics, and Algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239–257. https://doi.org/10.1017/jmo.2016.55
- Caicedo-Torres, W., & Payares, F. (2016, November 18-20). A machine learning model for occupancy rates and demand forecasting in the hospitality industry (Conference Session). Ibero-American Conference on Artificial Intelligence, Montevidéu.
- Capdevila-Torres, M., Ivanov, S., Garrod, B., & Hernandez-Maskivker, G. (2023). Open Access Publishing inTourism and Hospitality Research. Tourism, 71(2), 228–251. https://doi.org/10.37741/t.71.2.1
- Charoenwong, B., & Feng, G. (2016). Does higher frequency data always help to predict longer horizon volatility?. Journal of Risk, Forthcoming, 19(5), 55-75.
- Chen, S., Ngai, E. W. T., Ku, Y., Xu, Z., Gou, X., & Zhang, C. (2023). Prediction of hotel booking cancellations: Integration of machine learning and probability model based on interpretable feature interaction. Decision Support Systems, 170(2023), 113959. https://doi.org/10.1016/j.dss.2023.113959
- Cho, S., Pekgün, P., Janakiraman, R., & Wang, J. (2024). The Competitive Effects of Online Reviews on Hotel Demand. Journal of Marketing, 88(2), 40–60.
- Choi, J.-G., Zhang, Y.-W., Nadzri, N. I. B. M., Baymuminova, N., & Xu, S.-N. (2022). A Review of Forecasting Studies for the Hotel Industry: Focusing on results, contributions and limitations. GLOBAL BUSINESS FINANCE REVIEW, 27(5), 65–82. https://doi.org/10.17549/gbfr.2022.27.5.65
- Czerwinska, U. (2022). Interpretability of Machine Learning Models: How Can One Explain Machine Learning Models?. In R. Egger (Ed.), Applied Data Science in Tourism: Interdisciplinary Approaches, Methodologies, and Applications (pp. 275–303). Springer.
- Denizci Guillet, B., & Mohammed, I. (2015). Revenue management research in hospitality and tourism: A critical review of current literature and suggestions for future research. International Journal of Contemporary Hospitality Management, 27(4), 526–560. https://doi.org/10.1108/IJCHM-06-2014-0295
- Doborjeh, Z., Hemmington, N., Doborjeh, M., & Kasabov, N. (2022). Artificial intelligence: A systematic review of methods and applications in hospitality and tourism. International Journal of Contemporary Hospitality Management, 34(3), 1154–1176. https://doi.org/10.1108/IJCHM-06-2021-0767
- Dowlut, N., & Gobin-Rahimbux, B. (2023). Forecasting resort hotel tourism demand using deep learning techniques – A systematic literature review. Heliyon, 9(7), e18385. https://doi.org/10.1016/j.heliyon.2023.e18385
- Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(2021), 1–37.
- Erdem, M., & Jiang, L. (2016). An overview of hotel revenue management research and emerging key patterns in the third millennium. Journal of Hospitality and Tourism Technology, 7(3), 300–312. https://doi.org/10.1108/JHTT-10-2014-0058
- Fiig, T., Weatherford, L. R., & Wittman, M. D. (2019). Can demand forecast accuracy be linked to airline revenue? Journal of Revenue and Pricing Management, 18(4), 291–305. https://doi.org/10.1057/s41272-018-00174-2
- Font, X., Cannon, M., Woosnam, K., & Wu, J. S. (2024). Open science for sustainable tourism. Journal of Sustainable Tourism, 32(1), 1–7. https://doi.org/10.1080/09669582.2023.2295814
- Gerlings, J., Shollo, A., & Constantiou, I. (2020, January 5-8). Reviewing the need for explainable artificial intelligence (xAI) (Conference Session). 54th Hawaii International Conference on System Sciences, Grand Wailea, Maui, Hawaii.
- Gregory, A. (2012). Asset optimization according to customer preference: The necessary evolution of revenue management. Journal of Tourism Research & Hospitality, 1(3), 1-2. https://doi.org/10.4172/2324-8807.1000e109
- Guerra-Montenegro, J., Sanchez-Medina, J., Laña, I., Sanchez-Rodriguez, D., Alonso-Gonzalez, I., & Del Ser, J. (2021). Computational Intelligence in the hospitality industry: A systematic literature review and a prospect of challenges. Applied Soft Computing, 102(2021), 107082. https://doi.org/10.1016/j.asoc.2021.107082
- Helmold, M. (2020). Total revenue management (TRM). In M. Helmond (Ed.), Total Revenue Management (TRM) Case Studies, Best Practices and Industry Insights (pp. 1-12). Springer International Publishing. https://doi.org/10.1007/978-3-030-46985-6
- Huang, L., Li, C., & Zheng, W. (2023). Daily hotel demand forecasting with spatiotemporal features. International Journal of Contemporary Hospitality Management, 35(1), 26–45. https://doi.org/10.1108/IJCHM-12-2021-1505
- Huang, L., & Zheng, W. (2021). Novel deep learning approach for forecasting daily hotel demand with agglomeration effect. International Journal of Hospitality Management, 98(2021), 103038.
- Huang, L., & Zheng, W. (2023). Hotel demand forecasting: A comprehensive literature review. Tourism Review, 78(1), 218–244. https://doi.org/10.1108/TR-07-2022-0367
- Ivanov, S., & Zhechev, V. S. (2011). Hotel Revenue Management - A Critical Literature Review. SSRN Electronic Journal, 60(2), 175-197. https://doi.org/10.2139/ssrn.1977467
- Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
- Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. International Journal of Hospitality Management, 107(2022), 103317.
- Koupriouchina, L., Van Der Rest, J.-P., & Schwartz, Z. (2014). On revenue management and the use of occupancy forecasting error measures. International Journal of Hospitality Management, 41(2014), 104–114. https://doi.org/10.1016/j. ijhm.2014.05.002
- Kozlovskis, K., Liu, Y., Lace, N., & Meng, Y. (2023). APPLICATION OF MACHINE LEARNING ALGORITHMS TO PREDICT HOTEL OCCUPANCY. Journal of Business Economics and Management, 24(3), 594–613. https://doi.org/10.3846/jbem.2023.19775
- Lee, M., Mu, Xinpan, & Zhang, Yiqiao. (2020). A MACHINE LEARNING APPROACH TO IMPROVING FORECASTING ACCURACY OF HOTEL DEMAND: A COMPARATIVE ANALYSIS OF NEURAL NETWORKS AND TRADITIONAL MODELS. Issues In Information Systems, 21(1), 12–21. https://doi.org/10.48009/1_iis_2020_12-21
- Lv, H., Shi, S., & Gursoy, D. (2022). A look back and a leap forward: A review and synthesis of big data and artificial intelligence literature in hospitality and tourism. Journal of Hospitality Marketing & Management, 31(2), 145–175. https://doi.org/10.10 80/19368623.2021.1937434
- Mariani, M., & Baggio, R. (2022). Big data and analytics in hospitality and tourism: A systematic literature review. International Journal of Contemporary Hospitality Management, 34(1), 231–278. https://doi.org/10.1108/IJCHM-03-2021-0301
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339(2009), 1-8. https://doi.org/10.1136/bmj. b2535
- Mongan, J., Moy, L., & Kahn, C. E. (2020). Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiology: Artificial Intelligence, 2(2), e200029. https://doi.org/10.1148/ryai.2020200029
- Nannelli, M., Capone, F., & Lazzeretti, L. (2023). Artificial intelligence in hospitality and tourism. State of the art and future research avenues. European Planning Studies, 31(7), 1325–1344. https://doi.org/10.1080/09654313.2023.2180321
- Navarro, C. L. A., Damen, J. A., Takada, T., Nijman, S. W., Dhiman, P., Ma, J., Collins, G. S., Bajpai, R., Riley, R. D., & Moons, K. G. (2021). Risk of bias in studies on prediction models developed using supervised machine learning techniques: Systematic review. British Medical Journal, 375(2281), 1-9.
- Osei, B. A., Ragavan, N. A., & Mensah, H. K. (2020). Prospects of the fourth industrial revolution for the hospitality industry: A literature review. Journal of Hospitality and Tourism Technology, 11(3), 479–494.
- Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—A web and mobile app for systematic reviews. Systematic Reviews, 5(1), 210. https://doi.org/10.1186/s13643-016-0384-4
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseerm, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, E., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A.,, Thomas, J., Tricco, A. C., Welch, V. A., Whiting, & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372(71), 1-9. https://doi.org/10.1136/bmj.n71
- Pahlevan Sharif, S., Mura, P., & Wijesinghe, S. N. R. (2019). Systematic Reviews in Asia: Introducing the “PRISMA” Protocol to Tourism and Hospitality Scholars. In S. Rezaei (Ed.), Quantitative Tourism Research in Asia: Current Status and Future Directions (pp. 13–33). Springer Nature Singapore. https://doi.org/10.1007/978-981-13-2463-5_2
- Pan, B., & Yang, Y. (2017). Forecasting Destination Weekly Hotel Occupancy with Big Data. Journal of Travel Research, 56(7), 957–970. https://doi.org/10.1177/0047287516669050
- Pereira, L. N., & Cerqueira, V. (2022). Forecasting hotel demand for revenue management using machine learning regression methods. Current Issues in Tourism, 25(17), 2733–2750. https://doi.or g/10.1080/13683500.2021.1999397
- Phillips, P., Barnes, S., Zigan, K., & Schegg, R. (2017). Understanding the impact of online reviews on hotel performance: An empirical analysis. Journal of Travel Research, 56(2), 235–249.
- Phumchusri, N., & Ungtrakul, P. (2020). Hotel daily demand forecasting for high-frequency and complex seasonality data: A case study in Thailand. Journal of Revenue and Pricing Management, 19(2020), 8–25.
- Schwartz, Z., Ma, J., & Webb, T. (2023). The MSapeMER: A symmetric, scale-free and intuitive forecasting error measure for hospitality revenue management. International Journal of Contemporary Hospitality Management, 36(6), 2035-2048. https://doi.org/10.1108/IJCHM-01-2023-0088
- Schwartz, Z., Uysal, M., Webb, T., & Altin, M. (2016). Hotel daily occupancy forecasting with competitive sets: A recursive algorithm. International Journal of Contemporary Hospitality Management, 28(2), 267–285. https://doi.org/10.1108/IJCHM-10-2014-0507
- Tang, C. M. F., King, B., & Pratt, S. (2017). Predicting hotel occupancies with public data: An application of OECD indices as leading indicators. Tourism Economics, 23(5), 1096–1113. https://doi.org/10.1177/1354816616666670
- Tang, X., Li, X., Ding, Y., Song, M., & Bu, Y. (2020). The pace of artificial intelligence innovations: Speed, talent, and trial-and-error. Journal of Informetrics, 14(4), 101094. https://doi.org/10.1016/j.joi.2020.101094
- Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8), 1352–1362. https://doi.org/10.1057/jors.2014.103
- Tsang, W. K., & Benoit, D. F. (2020). Gaussian processes for daily demand prediction in tourism planning. Journal of Forecasting, 39(3), 551–568. https://doi.org/10.1002/for.2644
- Weatherford, L. R., & Bodily, S. E. (1992). A taxonomy and research overview of perishable asset revenue management: Yield management, overbooking, and pricing. Operations research, 40(5), 831-844. https://doi.org/10.1287/opre.40.5.831
- Wulff, K., & Finnestrand, H. (2023). Creating meaningful work in the age of AI: explainable AI, explainability, and why it matters to organizational designers. AI & SOCIETY, 39(2023), 1843–1856.
- Younis, H., Sundarakani, B., & Alsharairi, M. (2022). Applications of artificial intelligence and machine learning within supply chains:systematic review and future research directions. Journal of Modelling in Management, 17(3), 916–940. https://doi.org/10.1108/JM2-12-2020-0322
- Zhang, C., Wang, S., Sun, S., & Wei, Y. (2020). Knowledge mapping of tourism demand forecasting research. Tourism Management Perspectives, 35(2020), 100715. https://doi.org/10.1016/j.tmp.2020.100715
- Zhang, D., & Niu, B. (2024). Leveraging online reviews for hotel demand forecasting: A deep learning approach. Information Processing & Management, 61(1), 103527.
- Zhang, D., & Wu, C. (2023). What online review features really matter? An explainable deep learning approach for hotel demand forecasting. Journal of the Association for Information Science and Technology, 74(9), 1100–1117.