Have a personal or library account? Click to login
Evaluation of Olive Cake Management Options in Jordan using Rapid Impact Assessment Matrix Cover

Evaluation of Olive Cake Management Options in Jordan using Rapid Impact Assessment Matrix

Open Access
|Dec 2025

References

  1. Stempfle S, Carlucci D, de Gennaro BC, Roselli L, Giannoccaro G. Available pathways for operationalizing circular economy into the olive oil supply chain: Mapping evidence from a scoping literature review. Sustainability. 2021;13(17):9789. DOI: 10.3390/su13179789.
  2. Mohawesh O, Albalasmeh A, Al-Hamaiedeh H, Qaraleh S, Maaitah O, Bawalize A, et al. Controlled land application of olive mill wastewater (OMW): Enhance soil indices and barley growth performance in arid environments. Water Air Soil Pollut. 2020;231:1-12. DOI: 10.1007/s11270-020-04612-z.
  3. Mohawesh O, Al-Hamaiedeh H, Albalasmeh A, Qaraleh S, Haddadin M. Effect of olive mill wastewater (OMW) application on soil properties and wheat growth performance under rain-fed conditions. Water Air Soil Pollut. 2019;230(7):160. DOI: 10.1007/s11270-019-4208-8.
  4. Alrai Newspaper. Alrai 2021;16/11/2021. Available from: https://alrai.com/article/10710063.
  5. Petra News Agency. (2019). Olive mill waste: A recurring environmental problem (in Arabic). Available from: https://alghad.com/Section-208/uncategorized/%D9%85%D8%AE%D9%84%D9%81%D8%A7%D8%AA-%D8%B9%D8%B5%D8%B1-%D8%A7%D9%84%D8%B2%D9%8A%D8%AA%D9%88%D9%86-%D9%85%D8%B4%D9%83%D9%84%D8%A9-%D8%A8%D9%8A%D8%A6%D9%8A%D8%A9-%D8%AA%D8%AA%D8%AC%D8%AF%D8%AF-738868.
  6. Sciubba F, Chronopoulou L, Pizzichini D, Lionetti V, Fontana C, Aromolo R, et al. Olive mill wastes: A source of bioactive molecules for plant growth and protection against pathogens. Biology (Basel). 2020;9(12):450. DOI: 10.3390/biology9120450.
  7. Galati A, Schifani G, Crescimanno M, Migliore G, Vrontis D. Innovation strategies geared toward the circular economy: A case study of the organic olive-oil industry. Riv. Stud. Sostenib. 2018;1:137-58. DOI: 10.3280/riss2018-001011.
  8. Michalopoulos G, Kasapi K, Koubouris G, Psarras G, Arampatzis G, Hatzigiannakis E, et al. Adaptation of Mediterranean olive groves to climate change through sustainable cultivation practices. Climate. 2020;8(4):54. DOI: 10.3390/cli8040054.
  9. Aljbour SH. Catalytic pyrolysis of olive cake and domestic waste for biofuel production. Energy Sources, Part A 2018;40(23):2785-91. DOI: 10.1080/15567036.2018.1511649.
  10. Khdair A, Abu-Rumman G. Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) region. Processes. 2020;8(6):671. DOI: 10.3390/pr8060671.
  11. Al-Widyan M, Al-Jalil H. Stress-density relationship and energy requirement of compressed olive cake. Appl Eng Agric. 2001;17(6):749-53. DOI: 10.13031/2013.6833.
  12. Brlek T, Voća N, Krička T, Lević J, Vukmirović Đ, Čolović R. Quality of pelleted olive cake for energy generation. Agric. Conspec. Sci. 2012;77(1):31-5. Available from: http://acs.agr.hr/acs/index.php/acs/article/view/722.
  13. El Hanandeh A. Energy recovery alternatives for the sustainable management of olive oil industry waste in Australia: life cycle assessment. J Clean Prod. 2015;91:78-88. DOI: 10.1016/j.jclepro.2014.12.005.
  14. Al-Mrayat T, Al-Hamaiedeh H, El-Hasan T, Aljbour SH, Al-Ghazawi Z, Mohawesh O. Pyrolysis of domestic sewage sludge: influence of operational conditions on the product yields using factorial design. Heliyon 2022;8(5). DOI: 10.1016/j.heliyon.2022.e09418.
  15. Al-Hamaiedeh H, Aljbour SH, El-Hasan T, Almrayat T, Al-Ghazawi Z. Pyrolysis of domestic sewage sludge: effect of process parameters on biochar calorific value. Civ Environ Eng. 2023;19(2):640-8. DOI: 10.2478/cee-2023-0058.
  16. Aljeradat RA, Aljbour SH, Jarrah NA. Pyrolysis of date kernels using natural Jordanian Tripoli as a catalyst under different operational conditions. Case Stud Chem Environ Eng. 2022;6:100212. DOI: 10.1016/j.cscee.2022.100212.
  17. Aljeradat RA, Aljbour SH, Jarrah NA. Natural minerals as potential catalysts for the pyrolysis of date kernels: effect of catalysts on products yield and bio-oil quality. Energy Sources Part A. 2025:47(2):2003485. DOI: 10.1080/15567036.2021.2003485.
  18. Nunes LJ, Loureiro LM, Sá LC, Silva HF. Evaluation of the potential for energy recovery from olive oil industry waste: Thermochemical conversion technologies as fuel improvement methods. Fuel. 2020;279:118536. DOI: 10.1016/j.fuel.2020.118536.
  19. Alnhoud OT, Al-Harahsheh AM, Al-Harahsheh MS, Irshaid FI. Animal solid waste as a potential renewable biomass energy source: a case study of Jordan. Biomass Convers Biorefin. 2023;13:6807-16. DOI: 10.1007/s13399-021-01714-4.
  20. Aljbour SH, Kawamoto K, Tomohiko T, Yamada H. Kovar tube as a potential catalyst for conversion of tar produced from biomass gasification. Chem Chem Technol. 2022;16(3):454-60. DOI: 10.23939/chcht16.03.454.
  21. Aljbour SH, Kawamoto K. Cerium-promoted nickel/alumina catalyst for producer gas reforming and tar conversion. j Ecol Eng. 2022;23(6):58-66. DOI: 10.12911/22998993/147836.
  22. Roig A, Cayuela ML, Sánchez-Monedero MA. An overview on olive mill wastes and their valorisation methods. Waste Manage. 2006;26(9):960-9. DOI: 10.1016/j.wasman.2005.07.024.
  23. Aguado R, Vera D, López-García DA, Torreglosa JP, Jurado F. Techno-economic assessment of a gasification plant for distributed cogeneration in the agrifood sector. Appl Sci. 2021;11(2):660. DOI: 10.3390/app11020660.
  24. Palchetti E, Calamai A, Verdi L, Masoni A, Marini L, Chiaramonti D. Preliminary screening of agricultural feedstocks for anaerobic digestion. Adv Hortic Sci. 2019;33(3): 333-44. DOI: 10.13128/ahs-23633.
  25. Aljbour SH, Al-Hamaiedeh H, El-Hasan T, Hayek BO, Abu-Samhadaneh K, Al-Momany S. Anaerobic co-digestion of domestic sewage sludge with food waste: Incorporating food waste as a co-substrate under semi-continuous operation. J Ecol Eng. 2021;22(7):1-10. DOI: 10.12911/22998993/137442.
  26. Aljbour SH, El-Hasan T, Al-Hamiedeh H, Hayek B, Abu-Samhadaneh K. Anaerobic co-digestion of domestic sewage sludge and food waste for biogas production: A decentralized integrated management of sludge in Jordan. J Chem Technol Metall. 2021;56(5):1030-8. Available from: https://journal.uctm.edu/j2021-5.
  27. Valenti F, Liao W, Porto SM. Life cycle assessment of agro-industrial by-product reuse: a comparison between anaerobic digestion and conventional disposal treatments. Green Chem. 2020;22(20):7119-39. DOI: 10.1039/D0GC01918F.
  28. Al Rabadi S, Al-Zboon K, Shawaqfah M, Damseh R, Al Zoubi O. Biogas production through co-digestion of olive mill with municipal sewage sludge and cow manure. Environ Nat Resour J. 2021;20(2):137-47. DOI: 10.32526/ennrj/20/202100162.
  29. Al-Nawaiseh AR, Aljbour SH, Al-Hamaiedeh H, El-Hasan T, Hemidat S, Nassour A. Composting of organic waste: A sustainable alternative solution for solid waste management in Jordan. Jordan J Civ Eng. 2021;15(3):363-77. Available from: https://jjce.just.edu.jo/Download.ashx?f=YgjbrZm9OBNpmbhpFOgxlnt3Qx1vMwmh93L3dFd9tcQ%3D.
  30. Estrella-González MJ, López-González JA, Suárez-Estrella F, López MJ, Jurado MM, Siles-Castellano AB, et al. Evaluating the influence of raw materials on the behavior of nitrogen fractions in composting processes on an industrial scale. Bioresour Technol. 2020;303:122945. DOI: 10.1016/j.biortech.2020.122945.
  31. Obeidat BS. The effects of feeding olive cake and Saccharomyces cerevisiae supplementation on performance, nutrient digestibility and blood metabolites of Awassi lambs. Anim Feed Sci Technol. 2017;231:131-7. DOI: 10.1016/j.anifeedsci.2017.07.006.
  32. Guida M, Hannioui A. A review on thermochemical treatment of biomass: Pyrolysis of olive mill wastes in comparison with other types of biomass. Prog Agric Eng Sci. 2016;12(1):1-23. DOI: 10.1556/446.12.2016.1.
  33. Bouhia Y, Hafidi M, Ouhdouch Y, Lyamlouli K. Olive mill waste sludge: From permanent pollution to a highly beneficial organic biofertilizer: A critical review and future perspectives. Ecotoxicol. Environ Saf. 2023;259:114997. DOI: 10.1016/j.ecoenv.2023.114997.
  34. Al-Anber ZA, Al-Anber MAS. Thermodynamics and kinetic studies of iron(III) adsorption by olive cake in a batch system. J Mex Chem Soc. 2008;52(2):108-15. Available from: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-249X2008000200002.
  35. Al-Anber ZA, Matouq MAD. Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J Hazard Mater. 2008;151(1):194-201. DOI: 10.1016/j.jhazmat.2007.05.069.
  36. Alnaief M, Sandouqa A, Altarawneh I, Al-Shannag M, Alkasrawi M, Al-hamamre Z. Adsorption characteristics and potential of olive cake alkali residues for biodiesel purification. Energies. 2020;14(1):16. DOI: 10.3390/en14010016.
  37. Abu-Rumman G. Effect of olive mill solid waste on soil physical properties. Int J Soil Sci. 2016;11(3):94-101. DOI: 10.3923/ijss.2016.94.101.
  38. Al-Tabbal J, Al-Zboon K. The potential of the application of olive cake and stone cutting waste for soil amendment. Jordan J Earth Environ Sci. 2019;10(1):28-34. Available from: https://jjees.hu.edu.jo/vol10.htm.
  39. Al-Widyan MI, Al-Abed N, Al-Jalil H. Effect of composted olive cake on soil physical properties. Commun Soil Sci Plant Anal. 2005;36(9-10):1199-212. DOI: 10.1081/CSS-200056896.
  40. Abu Qdais H, Al-Widyan M. Evaluating composting and co-composting kinetics of various agro-industrial wastes. Int J Recycl Org Waste Agric. 2016;5(3):273-80. DOI: 10.1007/s40093-016-0137-3.
  41. Haddadin MS, Abdulrahim SM, Al-Khawaldeh GY, Robinson RK. Solid state fermentation of waste pomace from olive processing. J Chem Technol Biotechnol. 1999;74(7):613-8. DOI: 10.1002/(SICI)1097-4660(199907)74:7<;613::AID-JCTB80>3.0.CO;2-8.
  42. Ingole BS. Importance of environmental impact assessment and monitoring studies in industrial development. Available from: http://drs.nio.org/drs/handle/2264/778.
  43. Pastakia CM, Jensen A. The rapid impact assessment matrix (RIAM) for EIA. Environ Impact Assess Rev. 1998;18(5):461-82. DOI:10.1016/S0195-9255(98)00018-3.
  44. Kuitunen M, Jalava K, Hirvonen K. Testing the usability of the Rapid Impact Assessment Matrix (RIAM) method for comparison of EIA and SEA results. Environ Impact Assess Rev. 2008;28(4-5):312-20. DOI: 10.1016/j.eiar.2007.06.004.
  45. Valizadeh S, Hakimian H. Evaluation of waste management options using rapid impact assessment matrix and Iranian Leopold matrix in Birjand, Iran. Int J Environ Sci Technol. 2019;16(7):3337-54. DOI: 10.1007/s13762-018-1713-z.
  46. Jordan Ministry of Environment. Waste Management Framework Law No. 16 of 2020. Official Gazette, 2020. Available from: https://www.moenv.gov.jo/ebv4.0/root_storage/ar/eb_list_page/waste_management_framework_law_no_16_of_2020.pdf.
  47. Ijäs A, Kuitunen MT, Jalava K. Developing the RIAM method (rapid impact assessment matrix) in the context of impact significance assessment. Environ Impact Assess Rev. 2010;30(2):82-9. DOI: 10.1016/j.eiar.2009.05.009.
  48. Osman KT. Soil degradation, conservation and remediation. Vol. 820. Dordrecht: Springer; 2014. E-ISBN: 9789400775909, DOI: 10.1007/978-94-007-7590-9.
  49. Al-Zboon K. Impact of olive cake combustion on ambient air quality using AERMOD model. Indian J Eng. 2020;17(48):363-71. Available from: https://mail.discoveryjournals.org/engineering/current_issue/2020/v17/n48/index.htm.
  50. Angulo-Mosquera LS, Alvarado-Alvarado AA, Rivas-Arrieta MJ, Cattaneo CR, Rene ER, García-Depraect O. Production of solid biofuels from organic waste in developing countries: A review from sustainability and economic feasibility perspectives. Sci Total Environ. 2021;795:148816. DOI: 10.1016/j.scitotenv.2021.148816.
  51. Jin Q, Yang L, Poe N, Huang H. Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Sci Technol. 2018;74:119-31. DOI: 10.1016/j.tifs.2018.02.014.
  52. Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. Environ Res. 2022;206:112285. DOI: 10.1016/j.envres.2021.112285.
  53. Elbasiouny H, Elbanna BA, Al-Najoli E, Alsherief A, Negm S, Abou El-Nour E, et al. Agricultural Waste Management for Climate Change Mitigation: Some Implications to Egypt. In: Negm A, Shareef N, editors. Waste Management in MENA Regions. Springer Water. Cham: Springer; 2020. DOI: 10.1007/978-3-030-18350-9_8.
  54. Sun Y, Wang S, Yang Q, Li J, Wang L, Zhang S, et al. Environmental impact assessment of VOC emissions from biomass gasification power generation system based on life cycle analysis. Fuel. 2023;335:126905. DOI: 10.1016/j.fuel.2022.126905.
  55. Sansaniwal S, Rosen M, Tyagi S. Global challenges in the sustainable development of biomass gasification: An overview. Renew Sustain Energy Rev. 2017;80:23-43. DOI: 10.1016/j.rser.2017.05.215.
  56. Kabir Z, Khan I. Environmental impact assessment of waste to energy projects in developing countries: General guidelines in the context of Bangladesh. Sustain Energy Technol Assess. 2020;37:100619. DOI: 10.1016/j.seta.2019.100619.
  57. González CAD, Sandoval LP. Sustainability aspects of biomass gasification systems for small power generation. Renew Sustain Energy Rev. 2020;134:110180. DOI: 10.1016/j.rser.2020.110180.
  58. Mamphweli NS, Meyer EL. Implementation of the biomass gasification project for community empowerment at Melani village, Eastern Cape, South Africa. Renew Energy. 2009;34(12):2923-7. DOI: 10.1016/j.renene.2009.06.011.
  59. Vakalis S, Sotiropoulos A, Moustakas K, Malamis D, Baratieri M. Utilisation of biomass gasification byproducts for onsite energy production. Waste Manage Res. 2016;34(6):564-71. DOI: 10.1177/0734242X16643.
  60. Dong J, Tang Y, Nzihou A, Chi Y. Key factors influencing the environmental performance of pyrolysis, gasification and incineration waste-to-energy technologies. Energy Convers Manage. 2019;196:497-512. DOI: 10.1016/j.enconman.2019.06.016.
  61. Peigné J, Girardin PJW. Environmental impacts of farm-scale composting practices. Sci Total Environ. 2004;153:45-68. DOI: 10.1023/B:WATE.0000019932.04020.b6.
  62. Manios T. The composting potential of different organic solid wastes: experience from the island of Crete. Environ Int. 2004;29(8):1079-89. DOI: 10.1016/S0160-4120(03)00119-3.
  63. Killi D, Kavdır Y. Effects of olive solid waste and olive solid waste compost application on soil properties and growth of Solanum lycopersicum. Int Biodeterior Biodegrad. 2013;82:157-65. DOI: 10.1016/j.ibiod.2013.03.004.
  64. Meddich A, Oufdou K, Boutasknit A, Raklami A, Tahiri A, Ben-Laouane R, et al. Use of Organic and Biological Fertilizers as Strategies to Improve Crop Biomass, Yields and Physicochemical Parameters of Soil. In: Meena R, editor. Nutrient Dynamics for Sustainable Crop Production. Singapore: Springer; 2020. Online-ISBN: 9789811386602, DOI: 10.1007/978-981-13-8660-2_9.
  65. Lim SL, Wu TY, Lim PN, Shak KPY. The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric. 2015;95(6):1143-56. DOI: 10.1002/jsfa.6849.
  66. Zurbrügg C, Drescher S, Rytz I, Sinha AMM, Enayetullah I. Decentralised composting in Bangladesh, a win-win situation for all stakeholders. Resour Conserv Recycl. 2005;43(3):281-92. DOI: 10.1016/j.resconrec.2004.06.005.
  67. Chavan S, Yadav B, Atmakuri A, Tyagi RD, Wong JW, Drogui P. Bioconversion of organic wastes into value-added products: A review. Bioresour Technol. 2022;344:126398. DOI: 10.1016/j.biortech.2021.126398.
  68. Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O. Waste management through composting: Challenges and potentials. Sustainability. 2020;12(11):4456. DOI: 10.3390/su12114456.
  69. Hajam YA, Kumar R, Kumar A. Environmental waste management strategies and vermi transformation for sustainable development. Environ Chall. 2023:100747. DOI: 10.1016/j.envc.2023.100747.
  70. Al-Widyan MI, Tashtoush G, Hamasha AM. Combustion and emissions of pulverized olive cake in tube furnace. Energy Convers Manage. 2006;47(11-12):1588. DOI: 10.1016/j.enconman.2005.08.007.
  71. Fernández-Lobato L, Aguado R, Jurado F, Vera D. Biomass gasification as a key technology to reduce the environmental impact of virgin olive oil production: A Life Cycle Assessment approach. Biomass Bioenergy. 2022;165:106585. DOI: 10.1016/j.biombioe.2022.106585.
  72. Muscolo A, Papalia T, Settineri G, Mallamaci C, Jeske-Kaczanowska A. Are raw materials or composting conditions and time that most influence the maturity and/or quality of composts? Comparison of obtained composts on soil properties. J Clean Prod. 2018;195:93-101. DOI: 10.1016/j.jclepro.2018.05.204.
DOI: https://doi.org/10.2478/eces-2025-0027 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 515 - 533
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Salah H. Aljbour, Adnan Al-Harahsheh, Nabeel A. Jarrah, Husam Al-Hamaiedeh, Tayel El-Hasan, Sajeda Al-Rahaifeh, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.