Have a personal or library account? Click to login
Utilisation of Shrimp Shell as a Low-Cost Biosorbent for the Adsorption of Methylene Blue Dyes Cover

Utilisation of Shrimp Shell as a Low-Cost Biosorbent for the Adsorption of Methylene Blue Dyes

Open Access
|Apr 2024

References

  1. [1] Akbar NA, Sabri S, Abu Bakar AA, Azizan NS. Removal of colour using banana stem adsorbent in textile wastewater. J Phys: Conf Ser. 2019.1-6. DOI: 10.1088/1742-6596/1349/1/012091.
  2. [2] Hevira L, Azimatur R, Zein R, Zilfa Z, Yeni R. The fast and of low-cost-adsorbent to the removal of cationic and anionic dye using chicken eggshell with its membrane. Mediterr J Chem. 2020;10(3):294-301. DOI: 10.13171/mjc02003261271lh.
  3. [3] Phihusut D, Chantharat M. Removal of methylene blue using agricultural waste: A case study of rice husk and rice husk ash from Chaipattana rice mill demonstration center. Environ Nat Resour J. 2017;15(2):30-8. DOI: 10.14456/ennrj.2017.10.
  4. [4] Pang YL, Tan JH, Lim S, Chong WC. A state-of-the-art review on biowaste derived chitosan biomaterials for biosorption of organic dyes: Parameter studies, kinetics, isotherms and thermodynamics. Polymers. 2021;13(3009):2-28. DOI: 10.3390/polym13173009.
  5. [5] Vanlalhmingmawia C, Sreenivasa S, Tiwari D, Lee SM. Novel nanocomposite thin films for efficient degradation of Rhodamine B and Rhodamine 6G under visible light irradiation: Reaction mechanism and pathway studies. Environ Eng Res. 2023;28(4):1-15. DOI: 10.4491/eer.2022.430.
  6. [6] Irdemez Ş, Özyay G, Ekmekyapar Torun F, Kul S, Bingül Z. Comparison of bomaplex blue CR-L removal by adsorption using raw and activated pumpkin seed shells. Ecol Chem Eng S. 2022;29(2):199-216. DOI: 10.2478/eces-2022-0015.
  7. [7] Haskis P, Tsolis P, Tsiantouka L, Mpeza P, Barouchas P, Giannopoulos G, et al. Biosorption of methylene blue dye by Ligustrum lucidum fruits biomass: equilibrium, isotherm, kinetic and thermodynamic studies. Glob Nest J. 2023;25(X):1-8. DOI: 10.30955/gnj.005294.
  8. [8] Pandey LM. Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue. Appl Clay Sci. 2019;169:102-11. DOI: 10.1016/j.clay.2018.12.019.
  9. [9] Ahlawat A, Jaswal AS, Mishra S. Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri. Int Biodeterior Biodegrad. 2022;172:105424. DOI: 10.1016/j.ibiod.2022.105424.
  10. [10] Chowdhury MF, Khandaker S, Sarker F, Islam A, Rahman MT, Awual MR. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. J Mol Liq. 2020;318:114061. DOI: 10.1016/j.molliq.2020.114061.
  11. [11] Kalyana Chakravarthy M, Ramakrishna K, Pv SR. Kinetics and mechanism of oxidation of indigo carmine with potassium bromate: Effect of CTAB and SDS micelles. Int J Chem Sci. 2017;15(4):1-9.
  12. [12] Tarangini K, Rao KJ, Wacławek S, Černík M, Padil VVT. Aegle marmelos leaf extract based synthesis of nanoiron and nanoiron+Au particles for degradation of methylene blue. Ecol Chem Eng S. 2022;29(1):7-14. DOI: 10.2478/eces-2022-0002.
  13. [13] Shkliarenko Y, Halysh V, Nesterenko A. Adsorptive performance of walnut shells modified with urea and surfactant for cationic dye removal. Water. 2023;15(8):1-20. DOI: 10.3390/w15081536.
  14. [14] Ramadhani P, Chaidir Z, Zilfa, Tomi ZB, Rahmiarti D, Zein R. Shrimp shell (Metapenaeus monoceros) waste as a low-cost adsorbent for metanil yellow dye removal in aqueous solution. Desalin Water Treat. 2020;197:413-23. DOI: 10.5004/dwt.2020.25963.
  15. [15] Zein R, Purnomo JS, Ramadhani P, Alif MF, Safni S. Lemongrass (Cymbopogon nardus) leaves biowaste as an effective and low-cost adsorbent for methylene blue dyes removal: isotherms, kinetics, and thermodynamics studies. Sep Sci Technol. 2022;57(15):1-17. DOI: 10.1080/01496395.2022.2058549.
  16. [16] Djelloul C, Hamdaoui O. Removal of cationic dye from aqueous solution using melon peel as nonconventional low-cost sorbent. Desalin Water Treat. 2014;52(40-42):7701-10. DOI: 10.1080/19443994.2013.833555.
  17. [17] Rubangakene NO, Elkady M, Elwardany A, Fujii M, Sekiguchi H, Shokry H. Effective decontamination of methylene blue from aqueous solutions using novel nano-magnetic biochar from green pea peels. Environ Res. 2023;220:115272. DOI: 10.1016/j.envres.2023.115272.
  18. [18] Nnaji NJN, Sonde CU, Nwanji OL, Ezeh GC, Onuigbo AU, Ojukwu AM, et al. Dacryodes edulis leaf derived biochar for methylene blue biosorption. J Environ Chem Eng. 2023;11(3):109638. DOI: 10.1016/j.jece.2023.109638.
  19. [19] Hiep NT, Thu TTH, Quyen LTT, Dong PD, Suong TT, Vu TP. Biochar derived from sesbania sesban plant as a potential low-cost adsorbent for removal of methylene blue. Environ Nat Resour J. 2022;20(6):611-20. DOI: 10.32526/ennrj/20/202200119.
  20. [20] Naghizadeh A, Ghafouri M. Synthesis and performance evaluation of chitosan prepared from Persian gulf shrimp shell in removal of reactive blue 29 dye from aqueous solution (Isotherm, thermodynamic and kinetic study). Iran J Chem Chem Eng. 2017;36(3):25-36. Available from: https://www.ijcce.ac.ir/article_28058_bbe6444964b68661c3306b16d53a4010.pdf.
  21. [21] Ooi J, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Lim SS, Gan S. Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresour Technol. 2017;245:656-64. DOI: 10.1016/j.biortech.2017.08.153.
  22. [22] Ribeiro C, Scheufele FB, Espinoza-Quiñones FR, Módenes AN, da Silva MGC, Vieira MGA, et al. Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye. Colloids Surfaces A. Physicochem Eng Asp. 2015;482:693-701. DOI: 10.1016/j.colsurfa.2015.05.057.
  23. [23] Jawad AH, Rashid RA, Ishak MAM, Wilson LD. Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalin Water Treat. 2016;57(52):25194-206. DOI: 10.1080/19443994.2016.1144534.
  24. [24] Alseddig A, Eljiedi A, Kamari A. Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell. Proc Int Conf Education, Math Science 2016 (ICEMS2016) in Conjunction with 4th Int Postgraduate Conf Sci Math. 2016 (IPCSM2016). 2017. pp. 1-6. DOI: 10.1063/1.4983899.
  25. [25] Elwakeel KZ, Elgarahy AM, Mohammad SH. Use of beach bivalve shells located at Port Said coast (Egypt) as a green approach for methylene blue removal. J Environ Chem Eng. 2017;5(1):578-87. DOI: 10.1016/j.jece.2016.12.032.
  26. [26] P’yanova LG, Likholobov VA, Gerunova LK, Drozdetskaya MS, Sedanova AV, Kornienko NV. Adsorption of methylene blue and metanil yellow dyes by modified carbon sorbents. Russ J Appl Chem. 2017;90(12):2004-8. DOI: 10.1134/S1070427217120163.
  27. [27] Benhachem F, Attar T, Bouabdallah F. Kinetic study of adsorption methylene blue dye from aqueous solutions using activated carbon. Chem Rev Lett. 2019;2(1):33-9. DOI: 10.22034/crl.2019.87964.
DOI: https://doi.org/10.2478/eces-2024-0005 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 63 - 73
Published on: Apr 10, 2024
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Rahmiana Zein, Suci Wulandari, Putri Ramadhani, Deswati Deswati, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.