Have a personal or library account? Click to login
The Synthesis of 2,2-BIS(1-INDOL-3-YL)Acenaphthylene-1(2)-Ones Using Nanocatalysis: Fluorescent Sensing for Cu2+ Ions Cover

The Synthesis of 2,2-BIS(1-INDOL-3-YL)Acenaphthylene-1(2)-Ones Using Nanocatalysis: Fluorescent Sensing for Cu2+ Ions

Open Access
|Jan 2023

References

  1. [1] Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I. Dietary copper and human health: Current evidence and unresolved issues. J Trace Element Med Biol. 2016;35:107-15. DOI: 10.1016/j.jtemb.2016.02.006.10.1016/j.jtemb.2016.02.00627049134
  2. [2] Sarban S, Isikan UE, Kocabey Y, Kocyigit A. Relationship between synovial fluid and plasma manganese, arginase, and nitric oxide in patients with rheumatoid arthritis. Biol Trace Element Res. 2007;115(2):97-106. DOI: 10.1007/BF02686022.10.1007/BF0268602217435254
  3. [3] Romero A, Ramos E, de Los Ríos C, Egea JJ, del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res. 2014;56(4):343-70. DOI: 10.1111/jpi.12132.10.1111/jpi.1213224628077
  4. [4] Gu Q, Feng T, Cao H, Tang Y, Ge X, Luo J. HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation. Radiation Oncol. 2013;8(1):253. DOI: 10.1186/1748-717X-8-253.10.1186/1748-717X-8-253383964024175971
  5. [5] Raffi S, Mehrwan T, Bhatti M, Akhter J-I, Hameed A, Yawar W. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annal Microb. 2010;60(1):75-80. DOI: 10.1007/s13213-010-0015-6.10.1007/s13213-010-0015-6
  6. [6] Huff JD, Keung YK, Thakuri M, Beaty MW, Hurd DD, Owen J. Copper deficiency causes reversible myelodysplasia. Am J Hem. 2007;82(7):625-30. DOI: 10.1002/ajh.20864.10.1002/ajh.2086417236184
  7. [7] Ozturk P, Kurutas E, Ataseven A, Dokur N, Gumusalan Y, Gorur A, et al. BMI and levels of zinc, copper in hair, serum and urine of Turkish male patients with androgenetic alopecia. J Trace Element Med Biol. 2014;28(3):266-70. DOI: 10.1016/j.jtemb.2014.03.003.10.1016/j.jtemb.2014.03.00324746780
  8. [8] Antonucci L, Porcu C, Iannucci G, Balsano C, Barbaro B. Non-alcoholic fatty liver disease and nutritional implications: Special focus on copper. Nutrients. 2017;9(10):1137. DOI: 10.3390/nu9101137.10.3390/nu9101137569175329057834
  9. [9] Cilliers KCJ, Muller F, Page BJ. Trace element concentration changes in brain tumors: A review. Anat Rec (Hoboken). 2020;303(5):1293-9. DOI: 10.1002/ar.24254.10.1002/ar.2425431509337
  10. [10] Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coordinat Chem Rev. 2017;353:1-57. DOI: 10.1016/j.ccr.2017.10.004.10.1016/j.ccr.2017.10.004
  11. [11] Ismail Khan M, Khan MI, Khan SB, Khan AM, Akhtar K, Asiri AM. Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J Mol Liq. 2018;260:78-91. DOI: 10.1016/j.molliq.2018.03.058.10.1016/j.molliq.2018.03.058
  12. [12] Fardood ST, Ramazani A, Moradi S. Green synthesis of Ni-Cu-Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. J Sol-Gel Sci Technol. 2017;82:432-9. DOI: 10.1007/s10971-017-4310-6.10.1007/s10971-017-4310-6
  13. [13] Chen L, Noory Fajer A, Yessimbekov Z, Kazemi M, Mohammadi M. Diaryl sulfides synthesis: copper catalysts in C-S bond formation. J Sulfur Chem. 2019;40(4):451-68. DOI: 10.1080/17415993.2019.1596268.10.1080/17415993.2019.1596268
  14. [14] Gupta AK, De D, Katoch R, Garg A, Bharadwaj PK, Synthesis of a NbO type homochiral Cu(II) metal-organic framework: Ferroelectric behavior and heterogeneous catalysis of three-component coupling and Pechmann reactions. Inorg Chem. 2017;56(8):4697-705. DOI: 10.1021/acs.inorgchem.7b00342.10.1021/acs.inorgchem.7b0034228362106
  15. [15] An B, Zhang J, Cheng K, Ji P, Wang C, Lin W. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc. 2017;139:3834-40. DOI: 10.1021/jacs.7b00058.10.1021/jacs.7b0005828209054
  16. [16] Dong X, Ren B, Sun Z, Li C, Zhang X, Kong M, Zheng S, Dionysiou DD. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl Catal B. Environ. 2019;253:206-17. DOI: 10.1016/j.apcatb.2019.04.052.10.1016/j.apcatb.2019.04.052
  17. [17] Pachamuthu MP, Karthikeyan S, Maheswari R, Lee AF, Ramanathan A. Fenton-like degradation of bisphenol A catalyzed by mesoporous Cu/TUD-1. Appl Surface Sci. 2017;393:67-73. DOI: 10.1016/j.apsusc.2016.09.162.10.1016/j.apsusc.2016.09.162
  18. [18] Liang Y, Chen Z, Yao W, Wang P, Yu S, Wang X. Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants. Langmuir. 2017;33:7606-14. DOI: 10.1021/acs.langmuir.7b01540.10.1021/acs.langmuir.7b0154028723097
  19. [19] Thangadurai D, David M, Dabire SS, Sangeetha J, Prakash L. Nanotechnology and the Sustainability: Toxicological Assessments and Environmental Risks of Nanomaterials Under Climate Change. In: Kharissova OV, Martínez LMT, Kharisov BI, editors. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Cham: Springer International Publishing; 2020. pp. 1-22. DOI: 10.1007/978-3-030-11155-7_91-1.10.1007/978-3-030-11155-7_91-1
  20. [20] Nasrollahzadeh M, Issaabadi Z, Sajadi SM. Green synthesis of Pd/Fe3O4 nanocomposite using Hibiscus tiliaceus L. extract and its application for reductive catalysis of Cr(VI) and nitro compounds. Separat Purificat Technol. 2018;197:253-60. DOI: 10.1016/j.seppur.2018.01.010.10.1016/j.seppur.2018.01.010
  21. [21] Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M, et al. Green chemistry and coronavirus. Sustain Chem Pharm. 2021;21:100415. DOI: 10.1016/j.scp.2021.100415.10.1016/j.scp.2021.100415792759533686371
  22. [22] Safajoo N, Mirjalili BBF, Bamoniri A. A facile and clean synthesis of indenopyrido [2, 3-d] pyrimidines in the presence of Fe3O4@ NCs/Cu (II) as bio-based magnetic nano-catalyst. Polycycl Aromat Compd. 2021;41:1241-8. DOI: 10.1080/10406638.2019.1666889.10.1080/10406638.2019.1666889
  23. [23] Dalvi BA, Lokhande PD. Copper (II) catalyzed aromatization of tetrahydrocarbazole: An unprecedented protocol and its utility towards the synthesis of carbazole alkaloids. Tetrahedron Lett. 2018;59:2145-2149. DOI: 10.1016/j.tetlet.2018.01.061.10.1016/j.tetlet.2018.01.061
  24. [24] Kang W, Pei X, Rusinek CA, Bange A, Haynes EN, Heineman WR, Papautsky I. Determination of lead with a copper-based electrochemical sensor. Anal Chem. 2017;89:3345-52. DOI: 10.1021/acs.analchem.6b03894.10.1021/acs.analchem.6b03894542898328256823
  25. [25] Wei H, Pan D, Hu X, Liu M, Han H, Shen D. Voltammetric determination of copper in seawater at a glassy carbon disk electrode modified with Au@MnO2 core-shell microspheres. Microchimica Acta. 2018;185:258. DOI: 10.1007/s00604-018-2799-1.10.1007/s00604-018-2799-129680894
  26. [26] Li M, Huang X, Yu H. A colorimetric assay for ultrasensitive detection of copper(II) ions based on pH-dependent formation of heavily doped molybdenum oxide nanosheets. Mater Sci Engin C. 2019;101:614-18. DOI: 10.1016/j.msec.2019.04.022.10.1016/j.msec.2019.04.02231029354
  27. [27] Singh VK, Kushwaha CS, Shukla SK. Potentiometric detection of copper ion using chitin grafted polyaniline electrode. Int J Biol Macromol. 2020;147:250-257. DOI: 10.1016/j.ijbiomac.2019.12.209.10.1016/j.ijbiomac.2019.12.20931887388
  28. [28] Muhammad N, Zhang Y, Subhani Q, Intisar A, Mingli Y, Cui H, et al. Comparative steam distillation based digestion of complex inorganic copper concentrates samples followed by ion chromatographic determination of halogens. Microchem J. 2020;158:105176. DOI: 10.1016/j.microc.2020.105176.10.1016/j.microc.2020.105176
  29. [29] Wu L-L, Zhang Y, Zhao W, Li QM. Indirect determination of sodium cefotaxime with N-propyl alcohol-ammonium sulfate-water system by extraction-flotation of cuprous thiocyanate. J Chinese Chem Soc. 2008;55:550-6. DOI: 10.1002/jccs.200800081.10.1002/jccs.200800081
  30. [30] Tanaka Y-k, Ogra Y. Evaluation of copper metabolism in neonatal rats by speciation analysis using liquid chromatography hyphenated to ICP mass spectrometry. Metallomics. 2019;11:1679-1686. DOI: 10.1039/c9mt00158a.10.1039/c9mt00158a31417989
  31. [31] Gao Q, Ji L, Wang Q, Yin K, Li J, Chen L. Colorimetric sensor for highly sensitive and selective detection of copper ion. Anal Methods. 2017;9:5094-100. DOI: 10.1039/C7AY01335C.10.1039/C7AY01335C
  32. [32] He L, Z. Bao Z, Zhang K, Yang D, Sheng B, Huang R, et al. Ratiometric determination of copper(II) using dually emitting Mn (II)-doped ZnS quantum dots as a fluorescent probe. Microchim Acta. 2018;185:511. DOI: 10.1007/s00604-018-3043-8.10.1007/s00604-018-3043-830343449
  33. [33] Vojoudi H, Bastan B, Ghasemi JB, Badiei A. An ultrasensitive fluorescence sensor for determination of trace levels of copper in blood samples. Anal Bioanal Chem. 2019;411:5593-603. DOI: 10.1007/s00216-019-01940-w.10.1007/s00216-019-01940-w31289896
  34. [34] Fu Y, Fan C, Liu G, Pu S. A colorimetric and fluorescent sensor for Cu2+ and F− based on a diarylethene with a 1,8-naphthalimide Schiff base unit. Sensor Actuat B. Chem. 2017;239:295-303. DOI: 10.1016/j.snb.2016.08.020.10.1016/j.snb.2016.08.020
  35. [35] Jiao Y, Zhou L, He H, Yin J, Gao Q, Wei J, Duan C, Peng X. A novel rhodamine B-based off-on fluorescent sensor for selective recognition of copper (II) ions. Talanta. 2018;184:143-8. DOI: 10.1016/j.talanta.2018.01.073.10.1016/j.talanta.2018.01.07329674025
  36. [36] Chen J, Chen H, Wang T, Li J, Wang J, Lu X. Copper ion fluorescent probe based on Zr-MOFs composite material. Anal Chem. 2019; 91:4331-6. DOI: 10.1021/acs.analchem.8b03924.10.1021/acs.analchem.8b0392430854846
  37. [37] Ottoni O, Cruz R, Alves R. Efficient and simple methods for the introduction of the sulfonyl, acyl and alkyl protecting groups on the nitrogen of indole and its derivatives. Tetrahedron. 1998;54:13915-28. DOI: 10.1016/S0040-4020(98)00865-5.10.1016/S0040-4020(98)00865-5
  38. [38] Wan Y, Li Y, Yan C, Yan M, Tang Z. Indole: A privileged scaffold for the design of anti-cancer agents. Europ J Med Chem. 2019;183:111691. DOI: 10.1016/j.ejmech.2019.111691.10.1016/j.ejmech.2019.11169131536895
  39. [39] Birmann PT, Sousa FS, de Oliveira DH, Domingues M, Vieira BM, Lenardão EJ, et al. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole, a new selenium compound elicits an antinociceptive and anti-inflammatory effect in mice. Europ J Pharm. 2018;827:71-9. DOI: 10.1016/j.ejphar.2018.03.005.10.1016/j.ejphar.2018.03.00529535001
  40. [40] Ciulla MG, Kumar K. The natural and synthetic indole weaponry against bacteria. Tetrahedron Lett. 2018;593:3223-33. DOI: 10.1016/j.tetlet.2018.07.045.10.1016/j.tetlet.2018.07.045
  41. [41] Kaur J, Utreja D, Jain N, Sharma S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr Org Synth. 2019;16:17-37. DOI: 10.2174/1570179415666181113144939.10.2174/157017941566618111314493931965921
  42. [42] El-Mekabaty A, Mesbah A, Fadda AA. An efficient and facile synthesis of functionalized indole-3-yl pyrazole derivatives starting from 3-cyanoacetylindole. J Het Chem. 2017;54:916-22. DOI: 10.1002/jhet.2654.10.1002/jhet.2654
  43. [43] Kumari A, Singh RK. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg Chem. 2017;89:103021. DOI: 10.1016/j.bioorg.2019.103021.10.1016/j.bioorg.2019.10302131176854
  44. [44] Zheng K, Hong R. Stereoconfining macrocyclizations in the total synthesis of natural products. Nat Prod Rep. 2019;36:1546-75. DOI: 10.1039/C8NP00094H.10.1039/C8NP00094H
  45. [45] Graebin GCS, Ribeiro FV, Rogério KR, Kümmerle AE. Multicomponent reactions for the synthesis of bioactive compounds: a review. Curr Org Synth. 2019;16:855-99. DOI: 10.2174/1570179416666190718153703.10.2174/157017941666619071815370331984910
  46. [46] Ibarra IA, Islas-Jácome A, González-Zamora E. Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem. 2018;16: 1402-18. DOI: 10.1039/C7OB02305G.10.1039/C7OB02305G
  47. [47] Tan X, Liang Y, Ye Y, Liu Z, Meng J, Li F. Explainable Deep Learning-Assisted Fluorescence Discrimination for Aminoglycoside Antibiotic Identification. Anal Chem. 2022;94:829-36. DOI: 10.1021/acs.analchem.1c03508.10.1021/acs.analchem.1c0350834978809
  48. [48] Kakuchi R. The dawn of polymer chemistry based on multicomponent reactions. Polymer J. 2019;51:945-53. DOI: 10.1038/s41428-019-0209-0.10.1038/s41428-019-0209-0
  49. [49] Zhang Z, You Y, Hong C. Multicomponent reactions and multicomponent cascade reactions for the synthesis of sequence-controlled polymers. Macromol Rapid Commun. 2018;39:1800362. DOI: 10.1002/marc.201800362.10.1002/marc.20180036230066410
  50. [50] Kheilkordi Z, Mohammadi Ziarani G, Mohajer F, Badiei A, Varma RS. Waste-to-wealth transition: Application of natural waste materials as sustainable catalysts in multicomponent reactions. Green Chem. 2022;24:4304-27. DOI: 10.1039/D2GC00704E.10.1039/D2GC00704E
  51. [51] Kaur G, Kumar R, Saroch S, Gupta VK, Banerjee B. Mandelic acid: an efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr Organocatal. 2021;8:147-59. DOI: 10.2174/2213337207999200713145440.10.2174/2213337207999200713145440
  52. [52] Jamasbi N, Mohammadi Ziarani G, Mohajer F, Badiei A. A new Hg2+ colorimetric chemosensor: the synthesis of chromeno [d] pyrimidine-2, 5-dione/thione derivatives using Fe3O4@ SiO2@(BuSO3H)3. Res Chem Intermed. 2022;48:899-909. DOI: 10.1007/s11164-021-04611-7.10.1007/s11164-021-04611-7
  53. [53] Mohammadi Ziarani G, Khademi M, Mohajer F, Anafcheh M, Badiei A, Ghasemi JB. Solvent-free one-pot synthesis of 4-aryl-3, 5-dimethyl-1, 4, 7, 8-tetrahydrodipyrazolo [3, 4-b: 4′, 3′-e] pyridines using Fe3O4@ SiO2@(BuSO3H)3 catalytic Fe3+ system as selective colorimetric. Res Chem Intermed. 2022;48:2111-33. DOI: 10.1007/s11164-022-04682-0.10.1007/s11164-022-04682-0
  54. [54] Mohammadi Ziarani G, Ebrahimi Z, Mohajer F, Badiei A. Synthesis and application of SBA-Pr-Py@Pd in Suzuki-type cross-coupling reaction. Res Chem Intermed. 2021;47:4583-94. DOI: 10.1007/s11164-021-04544-1.10.1007/s11164-021-04544-1
  55. [55] Mohajer F, Mohammadi Ziarani G, Badiei A. The synthesis of SBA-Pr-3AP@Pd and its application as a highly dynamic, eco-friendly heterogeneous catalyst for Suzuki-Miyaura cross-coupling reaction. Res Chem Intermed. 2020;46:4909-22. DOI: 10.1007/s11164-020-04218-4.10.1007/s11164-020-04218-4
  56. [56] Chen M-N, Mo L-P, Cui Z-S, Zhang Z-H. Magnetic nanocatalysts: synthesis and application in multicomponent reactions. Curr Opin Green Sustain Chem. 2019;15:27-37. DOI: 10.1016/j.cogsc.2018.08.009.10.1016/j.cogsc.2018.08.009
  57. [57] Verma C, Haque J, Quraishi M, Ebenso EE. Aqueous phase environmental friendly organic corrosion inhibitors derived from one step multicomponent reactions: a review. J Mol Liq. 2019;275:18-40. DOI: 10.1016/j.molliq.2018.11.040.10.1016/j.molliq.2018.11.040
  58. [58] Leonardi M, VillacampaM, Menéndez JC. Multicomponent mechanochemical synthesis. Chem Sci. 2018;9:2042-64. DOI: 10.1039/C7SC05370C.10.1039/C7SC05370C590967329732114
  59. [59] Neochoritis CG, Zhao T, Dömling A. Tetrazoles via multicomponent reactions. Chem Rev. 2019;119:1970-2042. DOI: 10.1021/acs.chemrev.8b00564.10.1021/acs.chemrev.8b00564637645130707567
  60. [60] Chatel G. How sonochemistry contributes to green chemistry? Ultrason Sonochem. 2018;40:117-22. DOI: 10.1016/j.ultsonch.2017.03.029.10.1016/j.ultsonch.2017.03.02928341331
  61. [61] Zimmerman JB, Anastas PT, Erythropel HC, Leitner W. Designing for a green chemistry future. Science. 2020;367:397-400. DOI: 10.1126/science.aay3060.10.1126/science.aay306031974246
  62. [62] Sheldon RA. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain Chem Engin. 2018;6:32-48. DOI: 10.1021/acssuschemeng.7b03505.10.1021/acssuschemeng.7b03505
  63. [63] Shirmohammadli Y, Efhamisisi D, Pizzi A. Tannins as a sustainable raw material for green chemistry: A review. Indust Crop Product. 2018;126:316-32. DOI: 10.1016/j.indcrop.2018.10.034.10.1016/j.indcrop.2018.10.034
  64. [64] Antenucci A, Dughera S, Renzi P. Green chemistry meets asymmetric organocatalysis: a critical overview on catalysts synthesis. Chem Sust Chem. 2021;14:2785-853. DOI: 10.1002/cssc.202100573.10.1002/cssc.202100573836221933984187
  65. [65] Molnar M, Lončarić M, Kovač M. Green chemistry approaches to the synthesis of coumarin derivatives. Curr Org Chem. 2020;24:4-43. DOI: 10.2174/1385272824666200120144305.10.2174/1385272824666200120144305
  66. [66] Feng GL. An efficient synthesis of 2,2-bis(1H-indol-3-yl)-2H-acenaphthen-1-one catalyzed by recyclable solid superacid SO42−/TiO2 under grinding condition. Chinese Chem Lett. 2010;21(9):1057-61. DOI: 10.1016/j.cclet.2010.05.009.10.1016/j.cclet.2010.05.009
  67. [67] Yu J, Shen T, Lin Y, Zhou Y, Song Q. Rapid and efficient synthesis of 3,3-Di(1H-indol-3-yl)indolin-2-ones and 2,2-Di(1H-indol-3-yl)-2H-acenaphthen-1-ones Catalyzed by p-TSA. Synth Commun. 2014;44:2029-36. DOI: 10.1080/00397911.2014.886330.10.1080/00397911.2014.886330
  68. [68] Mohammadi Ziarani G, Hajiabbasi P, Badiei A. Application of SBA-Pr-NH2 as a nanoporous base silica catalyst in the development of 2,2-Bis(1H-indol-3-yl)acenaphthen-1(2H)-ones syntheses. J Iran Chem Soc. 2015;12:1649-54. DOI: 10.1007/s13738-015-0639-3.10.1007/s13738-015-0639-3
  69. [69] Feng G-L. Facile synthesis of 2,2-BIS(1H-indol-3-yl)acenaphthen-1(2H)-one derivatives catalysed by ceric ammonium nitrate. J Chem Res. 2015;34(4):203-5. DOI: 10.3184/030823410X12701382235942.10.3184/030823410X12701382235942
  70. [70] Fernandez LS, Buchanan MS, Carroll AR, Feng YJ, Quinn RJ, Avery VM. Flinderoles a−c: Antimalarial bis-indole alkaloids from flindersia species. Org Lett. 2009;11:329-332. DOI: 10.1021/ol802506n.10.1021/ol802506n19090698
  71. [71] Zhou G, He L, Li KH, Pedroso CC, Gochin M. A targeted covalent small molecule inhibitor of HIV-1 fusion. Chem Commun. 2021;57:4528-31. DOI: 10.1039/D1CC01013A.10.1039/D1CC01013A
  72. [72] Rohini R, Reddy PM, Shanker K, Hu A, Ravinder V. Antimicrobial study of newly synthesized 6-substituted indolo [1, 2-c] quinazolines. Europ J Med Chem. 2010;45:1200-5. DOI: 10.1016/j.ejmech.2009.11.038.10.1016/j.ejmech.2009.11.03820005020
  73. [73] Zhang F, Zhao K, Tang T, Deng Y, Zhang Y, Feng S, et al. Bisindole compound 4ae ameliorated cognitive impairment in rats with vascular dementia by anti-inflammation effect via microglia cells. Europ J Pharm. 2021;908:174357. DOI: 10.1016/j.ejphar.2021.174357.10.1016/j.ejphar.2021.17435734284012
  74. [74] Khan NA, Kaur N, Owens P, Thomas OP, Boyd A. Bis-indole alkaloids isolated from the sponge Spongosorites calcicola disrupt cell membranes of MRSA. Int J Mol Sci. 2022:23:1991. DOI: 10.3390/ijms23041991.10.3390/ijms23041991887444235216106
  75. [75] Jin T-Y, Li P-L, Wang C-L, Tang XL, Cheng M-M, Zong Y, et al. Racemic bisindole alkaloids: structure, bioactivity, and computational study. Chinese J Chem. 2021;39:2588-98. DOI: 10.1002/cjoc.202100255.10.1002/cjoc.202100255
  76. [76] Deb B, Debnath S, Chakraborty A, Majumdar S. Bis-indolylation of aldehydes and ketones using silica-supported FeCl3: molecular docking studies of bisindoles by targeting SARS-CoV-2 main protease binding sites. RSC Adv. 2021;11:30827-39. DOI: 10.1039/D1RA05679D.10.1039/D1RA05679D
  77. [77] Bhattacharjee P, Chatterjee S, Achari A, Saha A, Nandi D, Acharya C, et al. A bis-indole/carbazole based C5-curcuminoid fluorescent probe with large Stokes shift for selective detection of biothiols and application to live cell imaging. Analyst. 2020;145:1184-9. DOI: 10.1039/C9AN02190F.10.1039/C9AN02190F31859293
  78. [78] Wang Z-G, Wang Y, Ding X-J, Sun Y-X, Liu H-B, Xie CZ, et al. A highly selective colorimetric and fluorescent probe for quantitative detection of Cu2+/Co2+: The unique ON-OFF-ON fluorimetric detection strategy and applications in living cells/zebrafish. Spectrochim Acta A. Mol Biomol Spect. 2020;228:117763. DOI: 10.1016/j.saa.2019.117763.10.1016/j.saa.2019.11776331718979
  79. [79] Bhosale TR, Chandam DR, Anbhul PVe, Deshmukh MB. Synthesis of novel 4-((substituted bis-indolyl)methyl)-benzo-15-crown-5 for the colorimetric detection of Hg2+ ions in an aqueous medium. J Het Chem. 2019;56:477-84. DOI: 10.1002/jhet.3422.10.1002/jhet.3422
  80. [80] Kheilkordi Z, Mohammadi Ziarani G, Badeie A. Fe3O4@SiO2@(BuSO3H)3 synthesis as a new efficient nanocatalyst and its application in the synthesis of heterocyclic [3.3.3] propellane derivatives. Polyhedron. 2020;178:114343. DOI: 10.1016/j.poly.2019.114343.10.1016/j.poly.2019.114343
  81. [81] Renny JS, Tomasevich LL, Tallmadge EH, Collum DB. Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. Angew Chem Int Edit. 2013;52:11998-12013. DOI: 10.1002/anie.201304157.10.1002/anie.201304157402869424166797
  82. [82] Joshi B-P, Park J, Lee W-I, Lee K-H. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. Talanta. 2009;78:903-9. DOI: 10.1016/j.talanta.2008.12.062.10.1016/j.talanta.2008.12.06219269448
DOI: https://doi.org/10.2478/eces-2022-0033 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 463 - 475
Published on: Jan 14, 2023
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Ghodsi Mohammadi Ziarani, Mahdieh Khademi, Fatemeh Mohajer, Alireza Badiei, Rajender S. Varma, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.