Have a personal or library account? Click to login
All-trans Retinoic Acid Attenuates High Glucose-Induced VEGFA Expression via Inhibition of p38 MAPK and NF-κB in ARPE-19 Cells Cover

All-trans Retinoic Acid Attenuates High Glucose-Induced VEGFA Expression via Inhibition of p38 MAPK and NF-κB in ARPE-19 Cells

Open Access
|Jan 2026

References

  1. G. Zhang, W. Chen, H. Chen, J. Lin, L.P. Cen, P. Xie, Y. Zheng, T.K. Ng, M.E. Brelén, M. Zhang, C.P. Pang, Risk factors for diabetic retinopathy, diabetic macular edema, and sight-threatening diabetic retinopathy, Asia-Pacific Journal of Ophthalmology 13 (2024). https://doi.org/10.1016/j.apjo.2024.100067.
  2. W. Wang, A.C.Y. Lo, Diabetic retinopathy: Pathophysiology and treatments, Int J Mol Sci 19 (2018). https://doi.org/10.3390/ijms19061816.
  3. E.J. Duh, J.K. Sun, A.W. Stitt, Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies, JCI Insight 2 (2017). https://doi.org/10.1172/JCI.INSIGHT.93751.
  4. M. Whitehead, S. Wickremasinghe, A. Osborne, P. Van Wijngaarden, K.R. Martin, Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies, Expert Opin Biol Ther 18 (2018) 1257–1270. https://doi.org/10.1080/14712598.2018.1545836.
  5. S. Dragoni, P. Turowski, Polarised VEGFA signalling at vascular blood–neural barriers, Int J Mol Sci 19 (2018). https://doi.org/10.3390/ijms19051378.
  6. H. Funatsu, H. Noma, T. Mimura, S. Eguchi, S. Hori, Association of Vitreous Inflammatory Factors with Diabetic Macular Edema, Ophthalmology 116 (2009) 73–79. https://doi.org/10.1016/j.ophtha.2008.09.037.
  7. K. Itoh, M. Furuhashi, Y. Ida, H. Ohguro, M. Watanabe, S. Suzuki, F. Hikage, Detection of significantly high vitreous concentrations of fatty acid-binding protein 4 in patients with proliferative diabetic retinopathy, Sci Rep 11 (2021). https://doi.org/10.1038/s41598-021-91857-1.
  8. K.G. Falavarjani, Q.D. Nguyen, Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature, Eye (Basingstoke) 27 (2013) 787–794. https://doi.org/10.1038/eye.2013.107.
  9. T. Yamamoto, A. Kanda, S. Kase, S. Ishida, Hypoxia Induces Galectin-1 Expression Via Autoinduction of Placental Growth Factor in Retinal Pigment Epithelium Cells, Invest Ophthalmol Vis Sci 62 (2021). https://doi.org/10.1167/IOVS.62.2.22.
  10. A. Klettner, J. Roider, Constitutive and oxidative-stress-induced expression of VEGF in the RPE are differently regulated by different Mitogen-activated protein kinases, Graefe’s Archive for Clinical and Experimental Ophthalmology 247 (2009) 1487–1492. https://doi.org/10.1007/s00417-009-1139-x.
  11. C.N. Nagineni, V.K. Kommineni, A. William, B. Detrick, J.J. Hooks, Regulation of VEGF expression in human retinal cells by cytokines: Implications for the role of inflammation in age-related macular degeneration, J Cell Physiol 227 (2012) 116–126. https://doi.org/10.1002/jcp.22708.
  12. M.C. Marazita, A. Dugour, M.D. Marquioni-Ramella, J.M. Figueroa, A.M. Suburo, Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration, Redox Biol 7 (2016) 78–87. https://doi.org/10.1016/j.redox.2015.11.011.
  13. G. Maugeri, C. Bucolo, F. Drago, S. Rossi, M. Di Rosa, R. Imbesi, V. D’Agata, S. Giunta, Attenuation of High Glucose-Induced Damage in RPE Cells through p38 MAPK Signaling Pathway Inhibition, Front Pharmacol 12 (2021). https://doi.org/10.3389/fphar.2021.684680.
  14. D. Qin, Y.R. Jiang, Tangeretin Inhibition of High-Glucose-Induced IL-1 β, IL-6, TGF- β 1, and VEGF Expression in Human RPE Cells, J Diabetes Res 2020 (2020). https://doi.org/10.1155/2020/9490642.
  15. S. Devaraj, S.K. Venugopal, U. Singh, I. Jialal, I. Jialal, Hyperglycemia Induces Monocytic Release of Interleukin-6 via Induction of Protein Kinase C-and, 2005. http://diabetesjournals.org/diabetes/article-pdf/54/1/85/650530/zdb00105000085.pdf.
  16. W. Li, Q. Xing, Z. Liu, R. Liu, Y. Hu, Q. Yan, X. Liu, J. Zhang, The signaling pathways of traditional Chinese medicine in treating diabetic retinopathy, Front Pharmacol 14 (2023). https://doi.org/10.3389/fphar.2023.1165649.
  17. T.T. Schug, D.C. Berry, N.S. Shaw, S.N. Travis, N. Noy, Opposing Effects of Retinoic Acid on Cell Growth Result from Alternate Activation of Two Different Nuclear Receptors, Cell 129 (2007) 723–733. https://doi.org/10.1016/j.cell.2007.02.050.
  18. N.B. Ghyselinck, G. Duester, Retinoic acid signaling pathways, Development (Cambridge) 146 (2019). https://doi.org/10.1242/dev.167502.
  19. A. Dutta, T. Sen, A. Chatterjee, All-trans retinoic acid (ATRA) downregulates MMP-9 by modulating its regulatory molecules, Cell Adh Migr 4 (2010) 409–418. https://doi.org/10.4161/cam.4.3.11682.
  20. P. Tokarz, A.W. Piastowska-Ciesielska, K. Kaarniranta, J. Blasiak, All-trans retinoic acid modulates DNA damage response and the expression of the VEGF-A and MKI67 genes in ARPE-19 cells subjected to oxidative stress, Int J Mol Sci 17 (2016). https://doi.org/10.3390/ijms17060898.
  21. H. Rao, J.A. Jalali, T.P. Johnston, P. Koulen, Emerging Roles of Dyslipidemia and Hyperglycemia in Diabetic Retinopathy: Molecular Mechanisms and Clinical Perspectives, Front Endocrinol (Lausanne) 12 (2021). https://doi.org/10.3389/fendo.2021.620045.
  22. B. Pawlikowski, J. Wragge, J.A. Siegenthaler, Retinoic acid signaling in vascular development, Genesis 57 (2019). https://doi.org/10.1002/dvg.23287.
  23. A. Saito, A. Sugawara, A. Uruno, M. Kudo, H. Kagechika, Y. Sato, Y. Owada, H. Kondo, M. Sato, M. Kurabayashi, M. Imaizumi, S. Tsuchiya, S. Ito, All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: Possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling, Endocrinology 148 (2007) 1412–1423. https://doi.org/10.1210/en.2006-0900.
  24. E.G. Heimsath, R. Unda, E. Vidro, A. Muniz, E.T. Villazana-Espinoza, A. Tsin, ARPE-19 cell growth and cell functions in euglycemic culture media, Curr Eye Res 31 (2006) 1073–1080. https://doi.org/10.1080/02713680601052320.
  25. B. Rbara, V. Diaz, M.-C.C. Lenoir, A. Ladoux, C. Frelin, M. Dé Marchez, S. Michel, Regulation of Vascular Endothelial Growth Factor Expression in Human Keratinocytes by Retinoids*, 2000. http://www.jbc.org.
  26. E. Karkeni, L. Bonnet, J. Astier, C. Couturier, J. Dalifard, F. Tourniaire, J.F. Landrier, All-trans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-κB signaling, Journal of Nutritional Biochemistry 42 (2017) 101–107. https://doi.org/10.1016/j.jnutbio.2017.01.004.
  27. T. Yumnamcha, M. Guerra, L.P. Singh, A.S. Ibrahim, Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy, Antioxidants 9 (2020) 1–22. https://doi.org/10.3390/antiox9121244.
  28. A. Swarup, I.S. Samuels, B.A. Bell, J.Y. S Han, J. Du, E. Massenzio, E. Dale Abel, K. Boesze-Battaglia, N.S. Peachey, N.J. Philp, Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and Müller glial cells, Am J Physiol Cell Physiol 316 (2019) 121–133. https://doi.org/10.1152/ajpcell.00410.2018.-The.
  29. P. González, P. Lozano, G. Ros, F. Solano, Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections, Int J Mol Sci 24 (2023). https://doi.org/10.3390/ijms24119352.
  30. J. Jing, C. Nelson, J. Paik, Y. Shirasaka, J.K. Amory, N. Isoherranen, Physiologically Based Pharmacokinetic Model of All-trans-Retinoic Acid with Application to Cancer Populations and Drug Interactions, Journal of Pharmacology and Experimental Therapeutics 361 (2017) 246–258. https://doi.org/10.1124/jpet.117.240523.
  31. C. Murdoch, M. Muthana, S.B. Coffelt, C.E. Lewis, The role of myeloid cells in the promotion of tumour angio-genesis, Nat Rev Cancer 8 (2008) 618–631. https://doi.org/10.1038/nrc2444.
Language: English
Page range: 27 - 34
Published on: Jan 20, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Pin-Hao Ko, Ke-Li Tsai, Wei-Chen Hsu, Chiung-Wei Huang, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.