References
- G. Zhang, W. Chen, H. Chen, J. Lin, L.P. Cen, P. Xie, Y. Zheng, T.K. Ng, M.E. Brelén, M. Zhang, C.P. Pang, Risk factors for diabetic retinopathy, diabetic macular edema, and sight-threatening diabetic retinopathy, Asia-Pacific Journal of Ophthalmology 13 (2024). https://doi.org/10.1016/j.apjo.2024.100067.
- W. Wang, A.C.Y. Lo, Diabetic retinopathy: Pathophysiology and treatments, Int J Mol Sci 19 (2018). https://doi.org/10.3390/ijms19061816.
- E.J. Duh, J.K. Sun, A.W. Stitt, Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies, JCI Insight 2 (2017). https://doi.org/10.1172/JCI.INSIGHT.93751.
- M. Whitehead, S. Wickremasinghe, A. Osborne, P. Van Wijngaarden, K.R. Martin, Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies, Expert Opin Biol Ther 18 (2018) 1257–1270. https://doi.org/10.1080/14712598.2018.1545836.
- S. Dragoni, P. Turowski, Polarised VEGFA signalling at vascular blood–neural barriers, Int J Mol Sci 19 (2018). https://doi.org/10.3390/ijms19051378.
- H. Funatsu, H. Noma, T. Mimura, S. Eguchi, S. Hori, Association of Vitreous Inflammatory Factors with Diabetic Macular Edema, Ophthalmology 116 (2009) 73–79. https://doi.org/10.1016/j.ophtha.2008.09.037.
- K. Itoh, M. Furuhashi, Y. Ida, H. Ohguro, M. Watanabe, S. Suzuki, F. Hikage, Detection of significantly high vitreous concentrations of fatty acid-binding protein 4 in patients with proliferative diabetic retinopathy, Sci Rep 11 (2021). https://doi.org/10.1038/s41598-021-91857-1.
- K.G. Falavarjani, Q.D. Nguyen, Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature, Eye (Basingstoke) 27 (2013) 787–794. https://doi.org/10.1038/eye.2013.107.
- T. Yamamoto, A. Kanda, S. Kase, S. Ishida, Hypoxia Induces Galectin-1 Expression Via Autoinduction of Placental Growth Factor in Retinal Pigment Epithelium Cells, Invest Ophthalmol Vis Sci 62 (2021). https://doi.org/10.1167/IOVS.62.2.22.
- A. Klettner, J. Roider, Constitutive and oxidative-stress-induced expression of VEGF in the RPE are differently regulated by different Mitogen-activated protein kinases, Graefe’s Archive for Clinical and Experimental Ophthalmology 247 (2009) 1487–1492. https://doi.org/10.1007/s00417-009-1139-x.
- C.N. Nagineni, V.K. Kommineni, A. William, B. Detrick, J.J. Hooks, Regulation of VEGF expression in human retinal cells by cytokines: Implications for the role of inflammation in age-related macular degeneration, J Cell Physiol 227 (2012) 116–126. https://doi.org/10.1002/jcp.22708.
- M.C. Marazita, A. Dugour, M.D. Marquioni-Ramella, J.M. Figueroa, A.M. Suburo, Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration, Redox Biol 7 (2016) 78–87. https://doi.org/10.1016/j.redox.2015.11.011.
- G. Maugeri, C. Bucolo, F. Drago, S. Rossi, M. Di Rosa, R. Imbesi, V. D’Agata, S. Giunta, Attenuation of High Glucose-Induced Damage in RPE Cells through p38 MAPK Signaling Pathway Inhibition, Front Pharmacol 12 (2021). https://doi.org/10.3389/fphar.2021.684680.
- D. Qin, Y.R. Jiang, Tangeretin Inhibition of High-Glucose-Induced IL-1 β, IL-6, TGF- β 1, and VEGF Expression in Human RPE Cells, J Diabetes Res 2020 (2020). https://doi.org/10.1155/2020/9490642.
- S. Devaraj, S.K. Venugopal, U. Singh, I. Jialal, I. Jialal, Hyperglycemia Induces Monocytic Release of Interleukin-6 via Induction of Protein Kinase C-and, 2005. http://diabetesjournals.org/diabetes/article-pdf/54/1/85/650530/zdb00105000085.pdf.
- W. Li, Q. Xing, Z. Liu, R. Liu, Y. Hu, Q. Yan, X. Liu, J. Zhang, The signaling pathways of traditional Chinese medicine in treating diabetic retinopathy, Front Pharmacol 14 (2023). https://doi.org/10.3389/fphar.2023.1165649.
- T.T. Schug, D.C. Berry, N.S. Shaw, S.N. Travis, N. Noy, Opposing Effects of Retinoic Acid on Cell Growth Result from Alternate Activation of Two Different Nuclear Receptors, Cell 129 (2007) 723–733. https://doi.org/10.1016/j.cell.2007.02.050.
- N.B. Ghyselinck, G. Duester, Retinoic acid signaling pathways, Development (Cambridge) 146 (2019). https://doi.org/10.1242/dev.167502.
- A. Dutta, T. Sen, A. Chatterjee, All-trans retinoic acid (ATRA) downregulates MMP-9 by modulating its regulatory molecules, Cell Adh Migr 4 (2010) 409–418. https://doi.org/10.4161/cam.4.3.11682.
- P. Tokarz, A.W. Piastowska-Ciesielska, K. Kaarniranta, J. Blasiak, All-trans retinoic acid modulates DNA damage response and the expression of the VEGF-A and MKI67 genes in ARPE-19 cells subjected to oxidative stress, Int J Mol Sci 17 (2016). https://doi.org/10.3390/ijms17060898.
- H. Rao, J.A. Jalali, T.P. Johnston, P. Koulen, Emerging Roles of Dyslipidemia and Hyperglycemia in Diabetic Retinopathy: Molecular Mechanisms and Clinical Perspectives, Front Endocrinol (Lausanne) 12 (2021). https://doi.org/10.3389/fendo.2021.620045.
- B. Pawlikowski, J. Wragge, J.A. Siegenthaler, Retinoic acid signaling in vascular development, Genesis 57 (2019). https://doi.org/10.1002/dvg.23287.
- A. Saito, A. Sugawara, A. Uruno, M. Kudo, H. Kagechika, Y. Sato, Y. Owada, H. Kondo, M. Sato, M. Kurabayashi, M. Imaizumi, S. Tsuchiya, S. Ito, All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: Possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling, Endocrinology 148 (2007) 1412–1423. https://doi.org/10.1210/en.2006-0900.
- E.G. Heimsath, R. Unda, E. Vidro, A. Muniz, E.T. Villazana-Espinoza, A. Tsin, ARPE-19 cell growth and cell functions in euglycemic culture media, Curr Eye Res 31 (2006) 1073–1080. https://doi.org/10.1080/02713680601052320.
- B. Rbara, V. Diaz, M.-C.C. Lenoir, A. Ladoux, C. Frelin, M. Dé Marchez, S. Michel, Regulation of Vascular Endothelial Growth Factor Expression in Human Keratinocytes by Retinoids*, 2000. http://www.jbc.org.
- E. Karkeni, L. Bonnet, J. Astier, C. Couturier, J. Dalifard, F. Tourniaire, J.F. Landrier, All-trans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-κB signaling, Journal of Nutritional Biochemistry 42 (2017) 101–107. https://doi.org/10.1016/j.jnutbio.2017.01.004.
- T. Yumnamcha, M. Guerra, L.P. Singh, A.S. Ibrahim, Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy, Antioxidants 9 (2020) 1–22. https://doi.org/10.3390/antiox9121244.
- A. Swarup, I.S. Samuels, B.A. Bell, J.Y. S Han, J. Du, E. Massenzio, E. Dale Abel, K. Boesze-Battaglia, N.S. Peachey, N.J. Philp, Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and Müller glial cells, Am J Physiol Cell Physiol 316 (2019) 121–133. https://doi.org/10.1152/ajpcell.00410.2018.-The.
- P. González, P. Lozano, G. Ros, F. Solano, Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections, Int J Mol Sci 24 (2023). https://doi.org/10.3390/ijms24119352.
- J. Jing, C. Nelson, J. Paik, Y. Shirasaka, J.K. Amory, N. Isoherranen, Physiologically Based Pharmacokinetic Model of All-trans-Retinoic Acid with Application to Cancer Populations and Drug Interactions, Journal of Pharmacology and Experimental Therapeutics 361 (2017) 246–258. https://doi.org/10.1124/jpet.117.240523.
- C. Murdoch, M. Muthana, S.B. Coffelt, C.E. Lewis, The role of myeloid cells in the promotion of tumour angio-genesis, Nat Rev Cancer 8 (2008) 618–631. https://doi.org/10.1038/nrc2444.