References
- Ansari, M.A., et al., Current Nanoparticle Approaches in Nose to Brain Drug Delivery and Anticancer Therapy - A Review. Current Pharmaceutical Design, 2020. 26(1): p. 1128-1137.
- Cunha, L., et al., the role of molecular imaging in modern drug development. Drug Discovery Today, 2014. 19(7): p. 936-948.
- Khurana A, A.P., Khurana I, Allwadhi S, Weiskirchen R, Banothu AK, Chhabra D, Joshi K, Bharani KK, Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today, 2021.
- Pascolo, S., Synthetic Messenger RNA-Based Vaccines: From Scorn to Hype. Viruses-Basel, 2021. 13(2).
- Yetisgin, A.A., et al., Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules, 2020. 25(9).
- Palmai, M., et al., Direct immobilization of manganese chelates on silica nanospheres for MRI applications. Journal of Colloid and Interface Science, 2017. 498: p. 298-305.
- Varga, Z., et al., Radiolabeling of Extracellular Vesicles with Tc-99m for Quantitative In Vivo Imaging Studies. Cancer Biotherapy and Radiopharmaceuticals, 2016. 31(5): p. 168-173.
- Chung, Y.H., H. Cai, and N.F. Steinmetz, Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Advanced Drug Delivery Reviews, 2020. 156: p. 214-235.
- Ghitman, J., et al., Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Materials & Design, 2020. 193.
- Vijayan, V.M., P.N. Vasudevan, and V. Thomas, Polymeric Nanogels for Theranostic Applications: A Mini-Review. Current Nanoscience, 2020. 16(3): p. 392-398.
- Indoria, S., V. Singh, and M.F. Hsieh, Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. International Journal of Pharmaceutics, 2020. 582.
- Forgach, L., et al., Fluorescent, Prussian Blue-Based Biocompatible Nanoparticle System for Multimodal Imaging Contrast. Nanomaterials, 2020. 10(9).
- Kiss, B., et al., Topography, Spike Dynamics, and Nanomechanics of Individual Native SARS-CoV-2 Virions. Nano Letters, 2021. 21(6): p. 2675-2680.
- Stephen, Z.R., F.M. Kievit, and M.Q. Zhang, Magnetite nanoparticles for medical MR imaging. Materials Today, 2011. 14(7-8): p. 330-338.
- Szigeti, K., et al., Thallium Labeled Citrate-Coated Prussian Blue Nanoparticles as Potential Imaging Agent. Contrast Media & Molecular Imaging, 2018.
- Baalousha, M. and J.R. Lead, Characterization of natural and manufactured nanoparticles by atomic force microscopy: Effect of analysis mode, environment and sample preparation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2013. 419: p. 238-247.
- Sitterberg, J., et al., Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2010. 74(1): p. 2-13.F
- Sharma, P., et al., Multimodal Nanoparticulate Bioimaging Contrast Agents. Cancer Nanotechnology: Methods and Protocols, 2010. 624: p. 67-81.
- M. Verdaguer, G.S.G., Magnetic Prussian Blue Analogs, in Magnetism: Molecules to Materials, M.D. J. S. Miller, Editor. 2004, M. Wiley-VCH Verlag GmbH & Co. KGaA. p. 283-346.
- Shokouhimehr, M., et al., Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent. Inorganic Chemistry Communications, 2010. 13(1): p. 58-61.
- Gao, X.R., et al., the Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. Sensors, 2020. 20(23).
- Powers, K.W., et al., Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicological Sciences, 2006. 90(2): p. 296-303.
- Zhang, Y.N., et al., Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. Journal of Controlled Release, 2016. 240: p. 332-348.
- Tremoleda, J.L., et al., Imaging technologies for preclinical models of bone and joint disorders. Ejnmmi Research, 2011. 1.