Have a personal or library account? Click to login
Comparison of deep learning and conventional machine learning methods for classification of colon polyp types Cover

Comparison of deep learning and conventional machine learning methods for classification of colon polyp types

Open Access
|Jan 2021

References

  1. American Institute for Cancer Research. Colorectal cancer statistics, World Cancer Research Fund. World Cancer Research Fund. https://www.wcrf.org/dietandcancer/cancer-trends/colorectal-cancer-statistics Published 2019. Accessed November 5, 2020.
  2. Surveillance Epidemiology. Colorectal Cancer - Cancer Stat Facts. SEER Cancer Stat Facts: Colorectal Cancer. https://seer.cancer.gov/statfacts/html/colorect.html Published 2019. Accessed November 5, 2020.
  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019; 69(1):7-34. doi:10.3322/caac.21551
  4. Cooper GM, Hausman RE. The Development and Causes of Cancer. Cell A Mol Approach. 2007:743. https://www.ncbi.nlm.nih.gov/books/NBK9963/ Accessed November 15, 2020.
  5. Bond JH. Polyp guideline: diagnosis, treatment, and surveillance for patients with colorectal polyps. Am J Gastroenterol. 2000; 95(11):3053-3063. doi:10.1111/j.1572-0241.2000.03434.x
  6. Shinya H, Wolff WI. Morphology, anatomic distribution and cancer potential of colonic polyps. An analysis of 7,000 polyps endoscopically removed. Ann Surg. 1979; 190(6):679-683. doi:10.1097/00000658-197912000-00001
  7. Hasegawa S, Mitsuyama K, Kawano H, et al. Endoscopic discrimination of sessile serrated adenomas from other serrated lesions. Oncol Lett. 2011; 2(5):785-789. doi:10.3892/ol.2011.341
  8. Krishnan SM, Yang X, Chan KL, Kumar S, Goh PMY. Intestinal abnormality detection from endoscopic images. 2002; 20(2):895-898. doi:10.1109/iembs.1998.745583
  9. Krishnan SM, Tan CS, Chan KL. Closed-boundary extraction of large intestinal lumen. Annu Int Conf IEEE Eng Med Biol - Proc. 1994;16(pt 1):610-611.
  10. Iakovidis DK, Maroulis DE, Karkanis SA. An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput Biol Med. 2006; 36(10):10841103. doi:10.1016/j.compbiomed.2005.09.008
  11. Wang P, Krishnan SM, Kugean C, Tjoa MP. Classification of endoscopic images based on texture and neural network. Annu Reports Res React Institute, Kyoto Univ. 2001; 4:3691-3695. doi:10.1109/iembs.2001.1019637
  12. Tajbakhsh N, Gurudu SR, Liang J. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans Med Imaging. 2016; 35(2):630-644. doi:10.1109/TMI.2015.2487997
  13. Mori Y, Kudo S, Berzin TM, et al. Computer-aided diagnosis for colonoscopy What can we expect of CAD in clinical Automated detection of colorectal polyps. Endoscopy. 2017; 813-819.
  14. Urban G, Tripathi P, Alkayali T, et al. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology. 2018; 155(4):1069-1078.e8. doi:10.1053/j.gastro.2018.06.037
  15. Pace F, Buscema M, Dominici P, et al. Artificial neural networks are able to recognize gastro-oesophageal reflux disease patients solely on the basis of clinical data. Eur J Gastroenterol Hepatol. 2005; 17(6):605-610. doi:10.1097/00042737-200506000-00003
  16. Byrne MF, Chapados N, Soudan F, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019; 68(1):94-100. doi:10.1136/gutjnl-2017-314547
  17. Ganz M, Yang X, Slabaugh G. Automatic segmentation of polyps in colonoscopic narrow-band imaging data. IEEE Trans Biomed Eng. 2012; 59(8):2144-2151. doi:10.1109/TBME.2012.2195314
  18. Tamaki T, Yoshimuta J, Kawakami M, et al. Computer-aided colorectal tumor classification in NBI endoscopy: Using local features. Med Image Anal. 2013; 17(1):78-100. doi:10.1016/j.media.2012.08.003
  19. Häfner M, Brunauer L, Payer H, et al. Computer-aided classification of zoom-endoscopical images using Fourier filters. IEEE Trans Inf Technol Biomed. 2010; 14(4):958970. doi:10.1109/TITB.2010.2044184
  20. Tetsuji Takayama S, Katsuki, Yasuo Takahashi M, Ohi, Shuichi Nojiri, Sumio Sakamaki, Junji Kato K, Kogawa, Hirotsugu Miyake YN. Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med. 1998; 339(18):1277-1284.
  21. Gono K, Obi T, Yamaguchi M, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004; 9(3):568. doi:10.1117/1.1695563
  22. Dg H, Kaltenbach T, Sano Y. Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterol Endosc. 2012; 54(11):3642. doi:10.11280/gee.54.3642
  23. Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol. 2010; 8(10):865-869.e3. doi:10.1016/j.cgh.2010.05.018
  24. Mesejo P, Pizarro D, Abergel A, et al. Computer-aided classification of gastrointestinal lesions in regular colonos-copy. IEEE Trans Med Imaging. 2016; 35(9):2051-2063. doi:10.1109/TMI.2016.2547947
  25. Cai L, Zhu J, Zeng H, Chen J, Cai C, Ma KK. HOG-assisted deep feature learning for pedestrian gender recognition. J Franklin Inst. 2018; 355(4):1991-2008. doi:10.1016/j. jfranklin.2017.09.003
  26. Cao X, Wu C, Yan P, Li X. Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos. IEEE Int Conf Image Process. 2011; 2469-2472.
  27. Deeba F, Bui FM, Wahid KA. Computer-aided polyp detection based on image enhancement and saliency-based selection. Biomed Signal Process Control. 2020; 55:101530. doi:10.1016/j.bspc.2019.04.007
  28. Shin Y, Balasingham I. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2017; 3277-3280. doi:10.1109/ EMBC.2017.8037556
  29. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. Vol I.; 2005; 886-893. doi:10.1109/ CVPR.2005.177
  30. Cutler DR, Edwards TC, Beard KH, et al. Random forests for classification in ecology. Ecology. 2007; 88(11):27832792. doi:10.1890/07-0539.1
  31. Fushiki T. Estimation of prediction error by using K-fold cross-validation. Stat Comput. 2011; 21(2):137-146. doi:10.1007/s11222-009-9153-8
  32. Koyejo O, Natarajan N, Ravikumar P, Dhillon IS. Consistent binary classification with generalized performance metrics. Adv Neural Inf Process Syst. 2014; 3(January):2744-2752.
  33. Montgomery DC, Runger GC, Wiley J. Applied Statistics and Probability for Engineers Third Edition; 2003.
  34. Alhindi TJ, Kalra S, Ng KH, Afrin A, Tizhoosh HR. Comparing LBP, HOG and Deep Features for Classification of Histopathology Images. Proc Int Jt Conf Neural Networks. 2018; 2018-July. doi:10.1109/IJCNN.2018.8489329
  35. Aslan MF, Durdu A, Sabanci K, Mutluer MA. CNN and HOG based comparison study for complete occlusion handling in human tracking. Meas J Int Meas Confed. 2020; 158:107704. doi:10.1016/j.measurement.2020.107704
  36. Aslan MF, Durdu A, Sabanci K, Mutluer MA. CNN and HOG based comparison study for complete occlusion handling in human tracking. J Int Meas Confed. 2020; 158. doi:10.1016/j.measurement.2020.107704
  37. Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci US A. 2018; 115(13):E2970-E2979. doi:10.1073/pnas.1717139115
  38. Ahmad OF, Soares AS, Mazomenos E, et al. Artificial intelligence and computer-aided diagnosis in colonos-copy: current evidence and future directions. Lancet Gastroenterol Hepatol. 2019; 4(1):71-80. doi:10.1016/ S2468-1253(18)30282-6
  39. Billah M, Waheed S, Rahman MM. An automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network features. Int J Biomed Imaging. 2017; 2017:1-10. doi:10.1155/2017/9545920
  40. Jha D, Ali S, Johansen HD, et al. Real-time polyp detection, localisation and segmentation in colonoscopy using deep learning. arXiv Prepr arXiv201107631. November 2020. http://arxiv.org/abs/2011.07631 Accessed December 24, 2020.
  41. Haj-Manouchehri A, Mohammadi HM. Polyp detection using CNNs in colonoscopy video. IET Comput Vis. 2020; 14(5):241-247. doi:10.1049/iet-cvi.2019.0300
  42. Zhang R, Zheng Y, Mak TWC, et al. Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J Biomed Heal Informatics. 2017; 21(1):41-47. doi:10.1109/ JBHI.2016.2635662
  43. Wang Y, Pomeroy MJ, Cao W, et al. Differentiation of polyps by clinical colonoscopy via integrated color information, image derivatives and machine learning. 2019; (March 2019):106. doi:10.1117/12.2512578
  44. Min M, Su S, He W, Bi Y, Ma Z, Liu Y. Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology. Sci Rep. 2019; 9(1):1-8. doi:10.1038/s41598-019-39416-7
  45. Sharma A, Kumar R, Mansotra V. Handwritten digit recognition using convolutional neural networks. Int J Innov Res Comput Commun Eng (An ISO Certif Organ. 2016; 3297(6):11449-11455. doi:10.15680/IJIRCCE.2016
  46. Ghosh MMA, Maghari AY. A comparative study on handwriting digit recognition using neural networks. Proc - 2017 Int Conf Promis Electron Technol ICPET 2017. 2017; 77-81. doi:10.1109/ICPET.2017.20
Language: English
Page range: 34 - 42
Published on: Jan 22, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Refika Sultan Doğan, Bülent Yılmaz, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.