Figure 1

Figure 2

Figure 3

Figure 4

The number of test and training samples according to polyp-based stratification (80% polyps used in the training and 20% in the test set)_
| Adenoma | Serrated | Hyperplastic | |
|---|---|---|---|
| Resection | No-resection | ||
| Training | 32 | 12 | 17 |
| Test | 8 | 3 | 4 |
According to the polyps-based stratification, number of frames for each class (N: No-resection, R: Resection, A: Adenoma, H: Hyperplastic, S: Serrated)_
| 2-Class NBI | 2-Class WLI | 3-Class NBI | 3-Class WLI | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| N | R | N | R | A | H | S | A | H | S | |
| Test | 1162 | 4772 | 574 | 2769 | 3544 | 1162 | 1220 | 1990 | 574 | 779 |
| Train | 6991 | 22175 | 6795 | 26147 | 20504 | 6991 | 5964 | 21311 | 6795 | 4816 |
Two- and three-category classification results for different imaging modalities using deep learning_
| 3NBI | 3WLI | 2NBI | 2WLI | |
|---|---|---|---|---|
| Accuracy | 0.694 | 0.759 | 0.752 | 0.745 |
| Recall | 0.841 | 0.868 | 0.849 | 0.826 |
| Precision | 0.518 | 0.690 | 0.849 | 0.860 |
| f-measure | 0.517 | 0.726 | 0.849 | 0.843 |
Accuracy of the doctors’ predictions_
| A-H | A-H-S | |
|---|---|---|
| Expert 1 | 0.82 | 0.64 |
| Expert 2 | 0.83 | 0.69 |
| Expert 3 | 0.78 | 0.65 |
| Expert 4 | 0.77 | 0.58 |
| Novice 1 | 0.78 | 0.60 |
| Novice 2 | 0.86 | 0.68 |
| Novice 3 | 0.75 | 0.51 |
Two- and three-category classification results for different imaging modalities using conventional machine learning_
| 3NBI | 3WLI | 2NBI | 2WLI | |
|---|---|---|---|---|
| Accuracy | 0.632 | 0.587 | 0.874 | 0.944 |
| Recall | 0.504 | 0.556 | 0.910 | 0.960 |
| Precision | 0.463 | 0.572 | 0.662 | 0.807 |
| f-measure | 0.483 | 0.564 | 0.767 | 0.877 |
Number of extracted frames for each class_
| Class Types | |||
|---|---|---|---|
| Adenoma | Serrated | Hyperplastic | |
| Imaging Modality | Resection | No-resection | |
| NBI | 3544 | 1228 | 1162 |
| WLI | 1990 | 779 | 574 |
Accuracy of classification results_
| Imaging Modality | Tissue Types | Machine Learning | Deep Learning |
|---|---|---|---|
| NBI | A-H | 0.874 | 0.752 |
| A-H-S | 0.632 | 0.694 | |
| WLI | A-H | 0.944 | 0.745 |
| A-H-S | 0.587 | 0.759 |