References
- Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD. Opportunities and challenges of nanotechnology in the green economy. Environ Health 2014; 13:78.10.1186/1476-069X-13-7825294341
- Hutchison JE. The Road to Sustainable Nanotechnology: Challenges, Progress and Opportunities. ACS Sustain Chem Eng 2016; 4:5907-5914.10.1021/acssuschemeng.6b02121
- Cheng HN, Doemeny LJ, Geraci CL, Grob Schmidt D. Nanotechnology Overview: Opportunities and Challenges. Nanotechnology: Delivering on the Promise Volume 1. Volume 1220: American Chemical Society, 2016:1-12.
- Purohit R, Mittal A, Dalela S, Warudkar V, Purohit K, Purohit S. Social, Environmental and Ethical Impacts of Nanotechnology. Materials Today: Proceedings 2017; 4:5461-5467.
- Di Sia P. Nanotechnology Among Innovation, Health and Risks. Procedia Soc Beh Sci 2017; 237:1076-1080.10.1016/j.sbspro.2017.02.158
- Harifi T, Montazer M. Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a review. J Ind Text 2015; 46:1147-1169.
- Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer 2013; 13:727-38.10.1038/nrc359724060864
- Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed 2017; 12:2957-2978.10.2147/IJN.S127683
- Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm 2018; 538:263-278.2933924810.1016/j.ijpharm.2018.01.016
- Paccez JD, et al. The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene 2013; 32:689-98.2241077510.1038/onc.2012.89
- Rajamani D, Bhasin MK. Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med 2016; 8:38.2713721510.1186/s13073-016-0282-3
- Arredouani MS, et al. Identification of the transcription factor single- minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res 2009; 15:5794-802.1973796010.1158/1078-0432.CCR-09-0911
- Kumar B, Jalodia K, Kumar P, Gautam HK. Recent advances in nanoparticle- mediated drug delivery. J Drug Deliv Sci Technol 2017; 41:260-268.10.1016/j.jddst.2017.07.019
- Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 2017; 532:450-465.10.1016/j.ijpharm.2017.09.02828917985
- Sundar DS, Antoniraj MG, Kumar CS, Mohapatra SS, Houreld NN, Ruckmani K. Recent Trends of Biocompatible and Biodegradable Nanoparticles in Drug Delivery: A Review. Curr Med Chem 2016; 23:3730-3751.10.2174/092986732366616060710385427281132
- Mukherjee B, Dutta L, Mondal L, Dey NS, Chakraborty S, Maji R, Shaw TK. Nanoscale Formulations and Diagnostics With Their Recent Trends: A Major Focus of Future Nanotechnology. Curr Pharm Des 2015; 21:5172-86.10.2174/1381612821666150923094911
- Tayo LL. Stimuli-responsive nanocarriers for intracellular delivery. Biophys Rev 2017; 9:931-940.10.1007/s12551-017-0341-z29178081
- Safari J, Zarnegar Z. Advanced drug delivery systems: Nanotechnology of health design A review. J Saudi Chem Soc 2014; 18:85-99.10.1016/j.jscs.2012.12.009
- Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Trans Res 2013; 3:352-363.10.1007/s13346-013-0132-4
- Wang C, et al. A chitosan-modified graphene nanogel for noninvasive controlled drug release. Nanomedicine 2013; 9:903-11.2335280210.1016/j.nano.2013.01.003
- Williams EC, Toomey R, Alcantar N. Controlled release niosome embedded chitosan system: effect of crosslink mesh dimensions on drug release. J Biomed Mater Res A 2012; 100:3296-303.22733611
- Denmark DJ, et al. Remote triggering of thermoresponsive PNIPAM by iron oxide nanoparticles. RSC Advances 2016; 6:5641-5652.10.1039/C5RA21617F
- Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Mater Sci Eng: C 2017; 71:1267-1280.10.1016/j.msec.2016.11.030
- Walsh DP, et al. Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells. Mol Pharm 2018; 15:1878-1891.10.1021/acs.molpharmaceut.8b0004429590755
- Wei Z, et al. The diosgenin prodrug nanoparticles with pH-responsive as a drug delivery system uniquely prevents thrombosis without increased bleeding risk. Nanomedicine 2018; 14:673-684.2930991010.1016/j.nano.2017.12.019
- Boyapalle S, Xu W, Raulji P, Mohapatra S, Mohapatra SS. A Multiple siRNA-Based Anti-HIV/SHIV Microbicide Shows Protection in Both In Vitro and In Vivo Models. PLoS One 2015; 10:e0135288.2640708010.1371/journal.pone.0135288
- Lee DW, Shirley SA, Lockey RF, Mohapatra SS. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline. Respir Res 2006; 7:112.1693049010.1186/1465-9921-7-112
- Lee D, Zhang W, Shirley SA, Kong X, Hellermann GR, Lockey RF, Mohapatra SS. Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm Res 2007; 24:157-67.17103334
- Yang SD, et al. Binary-copolymer system base on low-density lipoprotein- coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug. J Biomed Mater Res B Appl Biomater 2017; 105:1114-1125.2700816310.1002/jbm.b.33636
- Das M, Howell M, Foran EA, Iyre R, Mohapatra SS, Mohapatra S. Sertoli Cells Loaded with Doxorubicin in Lipid Micelles Reduced Tumor Burden and Dox-Induced Toxicity. Cell Transplant 2017; 26:1694-1702.2925110810.1177/0963689717721223
- Zhang Y, Li N, Suh H, Irvine DJ. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat Comm 2018; 9:6.10.1038/s41467-017-02251-3
- Liu L, Ye Q, Lu M, Chen ST, Tseng HW, Lo YC, Ho C. A New Approach to Deliver Anti-cancer Nanodrugs with Reduced Off-target Toxicities and Improved Efficiency by Temporarily Blunting the Reticuloendothelial System with Intralipid. Sci Rep 2017; 7:16106.2917048210.1038/s41598-017-16293-6
- Germain M, et al. Priming the body to receive the therapeutic agent to redefine treatment benefit/risk profile. Sci Rep 2018; 8:4797.10.1038/s41598-018-23140-929556068
- Chandan R, Banerjee R. Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug delivery. Sci Rep 2018; 8:2624.2942267610.1038/s41598-018-21084-8
- Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Tremblay DC, Meckes DG, Jr. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-kappaB Signaling. J Virol 2017; 91.
- Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG, Jr. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget 2016; 7:86999-87015.27894104
- Hurwitz SN, Conlon MM, Rider MA, Brownstein NC, Meckes DG, Jr. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. J Extracell Vesicles 2016; 5:31295.10.3402/jev.v5.3129527421995
- Minghua W, et al. Plasma exosomes induced by remote ischaemic preconditioning attenuate myocardial ischaemia/reperfusion injury by transferring miR-24. Cell Death Dis 2018; 9:320.10.1038/s41419-018-0274-x29476052
- Amolegbe SA, et al. Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance. Sci Rep 2018; 8:3078.10.1038/s41598-018-21351-829449583
- Mandal T, Beck M, Kirsten N, Linden M, Buske C. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Sci Rep 2018; 8:989.10.1038/s41598-017-18932-429343865
- Farooq MU, et al. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells. Sci Rep 2018; 8:2907.2944069810.1038/s41598-018-21331-y
- Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target de livery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep 2018; 8:3815.10.1038/s41598-018-22172-5
- Lian X, Erazo-Oliveras A, Pellois JP, Zhou HC. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat Comm 2017; 8:2075.10.1038/s41467-017-02103-0
- Tiwari A, Singh A, Garg N, Randhawa JK. Curcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environment. Sci Rep 2017; 7:12598.10.1038/s41598-017-12786-628974697
- Shin CS, Marcano DC, Park K, Acharya G. Application of Hydrogel Template Strategy in Ocular Drug Delivery. Methods Mol Biol 2017; 1570:279-285.2823814410.1007/978-1-4939-6840-4_19
- Coursey TG, et al. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release 2015; 213:168-174.2618405110.1016/j.jconrel.2015.07.007
- Chen W, et al. Microneedle-array patches loaded with dual mineralized protein/peptide particles for type 2 diabetes therapy. Nat Comm 2017; 8:1777.10.1038/s41467-017-01764-1
- Karabin NB, et al. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat Comm 2018; 9:624.10.1038/s41467-018-03001-9
- Chaudhari AA, et al. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int J Mol Sci 2016; 17.
- Farris AL, Rindone AN, Grayson WL. Oxygen Delivering Biomaterials for Tissue Engineering. J Mater Chem B 2016; 4:3422-3432.10.1039/C5TB02635K27453782
- Akintewe OO, DuPont SJ, Elineni KK, Cross MC, Toomey RG, Gallant ND. Shape-changing hydrogel surfaces trigger rapid release of patterned tissue modules. Acta Biomater 2015; 11:96-103.10.1016/j.actbio.2014.09.04025266505
- Affram K, Udofot O, Cat A, Agyare E. In vitro and in vivo antitumor activity of gemcitabine loaded thermosensitive liposomal nanoparticles and mild hyperthermia in pancreatic cancer. Int J Adv Res 2015; 3:859-874.
- Affram K, Udofot O, Agyare E. Cytotoxicity of gemcitabine-loaded thermosensitive liposomes in pancreatic cancer cell lines. Integr Cancer Sci Ther 2015; 2:133-142.26090123
- Howell M, Mallela J, Wang C, Ravi S, Dixit S, Garapati U, Mohapatra S. Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. J Control Release 2013; 167:210-8.10.1016/j.jconrel.2013.01.02923395689
- Martinez JO, et al. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 2018; 8:1131-1145.2946400410.7150/thno.22078
- Sanchez-Ramos J, et al. Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J Drug Deliv Sci Technol 2018; 43:453-460.10.1016/j.jddst.2017.11.01329805475
- Das M, Wang C, Bedi R, Mohapatra SS, Mohapatra S. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury. Nanomedicine 2014; 10:1539-48.10.1016/j.nano.2014.01.00324486465
- Wang C, et al. Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 2012; 163:82-92.10.1016/j.jconrel.2012.04.03022561339
- Wang C, et al. Multifunctional Chitosan Magnetic-Graphene (CMG) Nanoparticles: a Theranostic Platform for Tumor-targeted Co-delivery of Drugs, Genes and MRI Contrast Agents. J Mater Chem B 2013; 1:4396-4405.10.1039/c3tb20452a24883188
- Varna M, Xuan HV, Fort E. Gold nanoparticles in cardiovascular imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10.
- Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849.10.7150/thno.2217229556359
- Das R, et al. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers. ACS Appl Mater Interfaces 2016; 8:25162-9.2758941010.1021/acsami.6b09942
- Usov NA, Nesmeyanov MS, Tarasov VP. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia. Sci Rep 2018; 8:1224.10.1038/s41598-017-18162-829352175
- Zhang L, et al. Bioinspired Multifunctional Melanin-Based Nanoliposome for Photoacoustic/Magnetic Resonance Imaging-Guided Efficient Photothermal Ablation of Cancer. Theranostics 2018; 8:1591-1606.2955634310.7150/thno.22430
- Yang G, et al. Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer. Nano letters 2018; 18:2475-2484.2956513910.1021/acs.nanolett.8b00040
- Wang H, et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Comm 2018; 9:562.10.1038/s41467-018-02915-8
- Mo R, Gu Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Materials Today 2016; 19:274-283.10.1016/j.mattod.2015.11.025
- Nahire R, et al. Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells. Biomaterials 2014; 35:6482-6497.2479787810.1016/j.biomaterials.2014.04.026
- Owens EA, et al. Near-Infrared Illumination of Native Tissues for Image-Guided Surgery. J Med Chem 2016; 59:5311-5323.10.1021/acs.jmedchem.6b0003827100476
- Hiroshima Y, et al. Effective fluorescence-guided surgery of liver metastasis using a fluorescent anti-CEA antibody. J Surg Oncol 2016; 114:951-958.2769644810.1002/jso.24462
- Matsumoto T, et al. A Mouse Model of Fluorescent Protein-expressing Disseminated Peritoneal Lymphoma for Fluorescence-guided Surgery. Anticancer Res 2016; 36:4483-7.10.21873/anticanres.1099327630285
- Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015; 200:138-57.10.1016/j.jconrel.2014.12.03025545217
- Bernthal NM, et al. Combined in vivo optical and microCT imaging to monitor infection, inflammation, and bone anatomy in an orthopaedic implant infection in mice. J Vis Exp 2014:e51612.
- Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018.29465222
- Li J, Green AA, Yan H, Fan C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat Chem 2017; 9:1056-1067.2906448910.1038/nchem.2852
- Udomprasert A, Kangsamaksin T. DNA origami applications in cancer therapy. Cancer Sci 2017; 108:1535-1543.10.1111/cas.1329028574639
- Franquelim HG, Khmelinskaia A, Sobczak JP, Dietz H, Schwille P. Membrane sculpting by curved DNA origami scaffolds. Nat Comm 2018; 9:811.10.1038/s41467-018-03198-9
- Raab M, et al. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures. Sci Rep 2018; 8:1780.10.1038/s41598-018-19905-x29379061
- Cronin M, et al. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS One 2012; 7:e30940.10.1371/journal.pone.0030940
- Hwang KS, Lee SM, Kim SK, Lee JH, Kim TS. Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem (Palo Alto Calif ) 2009; 2:77-98.2063605410.1146/annurev-anchem-060908-155232
- Shah P, Zhu X, Zhang X, He J, Li CZ. Microelectromechanical System- Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy. ACS Appl Mater Interfaces 2016; 8:5804-12.10.1021/acsami.5b1140926860350
- Cheemalapati SV, et al. Subcellular and in-vivo Nano-Endoscopy. Sci Rep 2016; 6:34400.10.1038/srep3440027694854
- Alwarappan S, Cissell K, Dixit S, Mohapatra S, Li CZ. Chitosan-Modified Graphene Electrodes for DNA Mutation Analysis. J Electroanal Chem (Lausanne) 2012; 686:69-72.10.1016/j.jelechem.2012.09.02623472058
- Girard YK, et al. A 3D fibrous scaffold inducing tumoroids: a platform for anticancer drug development. PLoS One 2013; 8:e75345.10.1371/journal.pone.007534524146752
- Terrell-Hall TB, Ammer AG, Griffith JI, Lockman PR. Permeability across a novel microfluidic blood-tumor barrier model. Fluids Barriers CNS 2017; 14:3.10.1186/s12987-017-0050-928114946
- Samavedi S, Joy N. 3D printing for the development of in vitro cancer models. Curr Opin Biomed Eng 2017; 2:35-42.10.1016/j.cobme.2017.06.003
- Vafai N, Lowry TW, Wilson KA, Davidson MW, Lenhert S. Evaporative edge lithography of a liposomal drug microarray for cell migration assays. Nanofabrication 2015; 2:34-42.27617264
- Kusi-Appiah AE, Lowry TW, Darrow EM, Wilson KA, Chadwick BP, Davidson MW, Lenhert S. Quantitative dose-response curves from subcellular lipid multilayer microarrays. Lab on a chip 2015; 15:3397-404.2616794910.1039/C5LC00478K
- Ghazanfari L, Lenhert S. Screening of Lipid Composition for Scalable Fabrication of Solvent-Free Lipid Microarrays. Front Mater 2016; 3.
- Lowry TW, Prommapan P, Rainer Q, Van Winkle D, Lenhert S. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose. Sensors (Basel, Switzerland) 2015; 15:20863-72.10.3390/s15082086326308001
- Bazard P, Frisina RD, Walton JP, Bhethanabotla VR. Nanoparticle- based Plasmonic Transduction for Modulation of Electrically Excitable Cells. Sci Rep 2017; 7:7803.10.1038/s41598-017-08141-428798342