References
- Aboujaoude, R., Kmeid, R., Gebrael, C., & Amm, E. (2022). Comparison of the accuracy of bracket positioning between direct and digital indirect bonding techniques in the maxillary arch: a three-dimensional study. Progress in Orthodontics, 23(1), 31. DOI: 10.1186/s40510-022-00426-3
- Adnan, A., & Agha, N. (2024). Does the Addition of Seashell or Zirconium Oxide Nanoparticles at Different Concentrations Improving Tensile Bond Strength of Orthodontic Adhesive? In-vitro study. Al-Rafidain Dental Journal, 24(2), 331-341. DOI: 10.33899/rdenj.2022.136509.1176
- Ahmadian, E., Shahi, S., Yazdani, J., Dizaj, S. M., & Sharifi, S. (2018). Local treatment of the dental caries using nanomaterials. Biomedicine & Pharmacotherapy, 108, 443-447. DOI: 10.1016/j.biopha.2018.09.026
- Al-Saleh, S., Alateeq, A., Alshaya, A. H., Al-Qahtani, A. S., Tulbah, H. I., Binhasan, M., ... & Abduljabbar, T. (2021). Influence of TiO2 and ZrO2 nanoparticles on adhesive bond strength and viscosity of dentin polymer: A physical and chemical evaluation. Polymers, 13(21), 3794. ISO 690. DOI: 10.3390/polym13213794
- Barkmeier, W. W., & Cooley, R. L. (1992). Laboratory evaluation of adhesive systems. Operative dentistry, 50-61.
- Bilen, H. B., & Çokakoğlu, S. (2020). Effects of one-step orthodontic adhesive on microleakage and bracket bond strength: An in vitro comparative study. International orthodontics, 18(2), 366-373. DOI: 10.1016/j.ortho.2020.01.010
- Brantley, W. A., & Eliades, T. (2001). Orthodontic materials: scientific and clinical aspects. American Journal of Orthodontics and dentofacial orthopedics, 119(6), 672-673.
- Bukhari, K., Alaydaa, R., Alhazmi, R., Alharbi, A., Alahmadi, O., Zafar, M., & Almarhoumi, A. (2025). Comparative analysis of shear bond strength and debonding characteristics of bioactive versus conventional orthodontic adhesives: An in-vitro study. The Saudi Dental Journal, 37(1), 3. ISO 690. DOI: 10.1007/s44445-025-00002-5
- Carreau, P. J. (1972). Rheological equations from molecular network theories. Transactions of the Society of Rheology, 16(1), 99-127.
- Condò, R., Mampieri, G., Cioffi, A., Cataldi, M. E., Frustaci, I., Giancotti, A., ... & Pasquantonio, G. (2021). Physical and chemical mechanisms involved in adhesion of orthodontic bonding composites: in vitro evaluations. BMC Oral Health, 21(1), 350. DOI: 10.1186/s12903-021-01715-9
- Cross, M. M. (1965). Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. Journal of colloid science, 20(5), 417-437. DOI: 10.1016/0095-8522(65)90022-X
- Fierascu, R. C. (2022). Incorporation of nanomaterials in glass ionomer cements – recent developments and future perspectives: a narrative review. Nanomaterials, 12(21), 3827. DOI: 10.3390/nano12213827
- Frankenberger, R., Lopes, M., Perdigão, J., Ambrose, W. W., & Rosa, B. T. (2002). The use of flowable composites as filled adhesives. Dental materials, 18(3), 227-238. DOI: 10.1016/S0109-5641(01)00040-9
- Hadi, N. J., Rydzkowski, T., Ali, Z. S., & Al-Jarwany, Q. A. (2025). Correlations Between Crystallinity, Rheological Behavior, and Short-Term Biodegradation for LDPE/Cellulose Composites with Potential as Packaging Films. Coatings, 15(4), 397. DOI: 10.3390/coatings15040397
- Hasan, L. A. (2021). Evaluation the properties of orthodontic adhesive incorporated with nanohydroxyapatite particles. The Saudi dental journal, 33(8), 1190-1196. DOI: 10.1016/j.sdentj.2021.01.001
- Hussein, A. H., & Yassir, Y. A. (2024). Development of a graphene oxide/hydroxyapatite-containing orthodontic primer: An in-vitro study. Materials Chemistry and Physics, 326, 129857. DOI: 10.1016/j.matchemphys.2024.129857
- Hwang, C., Choi, M. H., Kim, H. E., Jeong, S. H., & Park, J. U. (2022). Reactive oxygen species-generating hydrogel platform for enhanced antibacterial therapy. NPG Asia Materials, 14(1), 72. DOI: 10.1038/s41427-022-00420-5
- Kim, H., Giap, H. V., Kim, K. H., Yu, H. S., Kwon, J. S., Lee, H., & Lee, K. J. (2025). Shear bond strength of zirconia orthodontic brackets depending on surface pretreatment of bonding base. Scientific Reports, 15(1), 38348. DOI: 10.1038/s41598-025-22230-9
- Kiryk, S., Kiryk, J., Matys, J., & Dobrzyński, M. (2025). The Influence of Resin Infiltration on the Shear Bond Strength of Orthodontic Brackets: A Systematic Review and Meta-Analysis. Journal of Functional Biomaterials, 16(1), 32. DOI: 10.3390/jfb16010032
- Knox, J., Jones, M. L., Hubsch, P., & Middleton, J. (2000). The influence of orthodontic adhesive properties on the quality of orthodontic attachment. The Angle Orthodontist, 70(3), 241-246. DOI: 10.1043/0003-3219(2000)070%3C0241:TIOOAP%3E2.0.CO;2
- Kux, B. J., Bacigalupo, L. M., Scriba, A., Emmrich, M., & Jost-Brinkmann, P. G. (2022). Elution study of acrylic monomers from orthodontic materials using high performance liquid chromatography (HPLC). Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie, 83(1), 34-47. DOI: 10.1007/s00056-021-00292-4
- Nikpour, S., Shahroudi, A. S., Saffarpour, A., Akhavan, A., & Sodagar, A. (2021). Shear Bond Strength of Self-Adhesive Composite Containing TiO2 and SiO2 Nanoparticles with an Additional Etching Step for Orthodontic Brackets Bonding to Enamel. Folia Medica, 63(6), 865-874. DOI: 10.3897/folmed.63.e56657
- Par, M., Gotovac, L., Horvat, S., Marovic, D., Tarle, Z., Tauböck, T. T., ... & Panduric, V. (2025). Comparing ISO 4049 and Fourier-transform infrared spectroscopy for assessing ambient light sensitivity in dental resin composites. Scientific reports, 15(1), 8455. DOI: 10.1038/s41598-025-93088-0
- Priyadarsini, S., Mukherjee, S., & Mishra, M. (2018). Nanoparticles used in dentistry: A review. Journal of oral biology and craniofacial research, 8(1), 58-67. DOI: 10.1016/j.jobcr.2017.12.004
- Sayed, M. E. (2025). Comparative Evaluation of Shear Bond Strength of Aesthetic Orthodontic Brackets Bonded to Aged Composite Restorative Resin Materials. Polymers, 17(5), 621. DOI: 10.3390/polym17050621
- Seyedmajidi, S., Rajabnia, R., & Seyedmajidi, M. (2018). Evaluation of antibacterial properties of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as a cellular scaffold of bone tissue. Journal of Laboratory Physicians, 10(03), 265-270. DOI: 10.4103/JLP.JLP_167_17
- Sharifi, N., Mohammadi, Z., Arab, S., Shojaee, M., Vafadoost, F., & Zakerzadeh, A. (2022). Shear bond strength of orthodontic brackets bonded with a self-adhering composite in dry and saliva-contaminated conditions. Frontiers in Dentistry, 19, 5. DOI: 10.18502/fid.v19i5.8548
- Wiertelak-Makała, K., Szymczak-Pajor, I., Bociong, K., & Śliwińska, A. (2023). Considerations about cytotoxicity of resin-based composite dental materials: A systematic review. International Journal of Molecular Sciences, 25(1), 152. DOI: 10.3390/ijms25010152
- Yan, J., Sun, H., Liu, Z., Yang, Z., Luo, T., Liao, X., ... & Hua, F. (2025). Fluorescent Orthodontic Adhesive With APTES-Modified ZnO Quantum Dots: Bond Strength, Cytocompatibility, and Clinical Feasibility. Orthodontics & Craniofacial Research. ISO 690. DOI: 10.1111/ocr.12932
- Zaki, S. S., Ghorab, S. M., & Shamaa, M. S. (2023). Antioxidant effect on shear bond strength of orthodontic brackets after tooth bleaching: a scoping review of in vitro studies. International Orthodontics, 21(3), 100777. DOI: 10.1016/j.ortho.2023.100777