Have a personal or library account? Click to login
Exploring the Impact of Primer Adhesives Flow Properties on Orthodontic Bonding Cover

Exploring the Impact of Primer Adhesives Flow Properties on Orthodontic Bonding

By: Ayah Ibrahim,  Ammar Kazem and  Nizar Hadi  
Open Access
|Dec 2025

References

  1. Aboujaoude, R., Kmeid, R., Gebrael, C., & Amm, E. (2022). Comparison of the accuracy of bracket positioning between direct and digital indirect bonding techniques in the maxillary arch: a three-dimensional study. Progress in Orthodontics, 23(1), 31. DOI: 10.1186/s40510-022-00426-3
  2. Adnan, A., & Agha, N. (2024). Does the Addition of Seashell or Zirconium Oxide Nanoparticles at Different Concentrations Improving Tensile Bond Strength of Orthodontic Adhesive? In-vitro study. Al-Rafidain Dental Journal, 24(2), 331-341. DOI: 10.33899/rdenj.2022.136509.1176
  3. Ahmadian, E., Shahi, S., Yazdani, J., Dizaj, S. M., & Sharifi, S. (2018). Local treatment of the dental caries using nanomaterials. Biomedicine & Pharmacotherapy, 108, 443-447. DOI: 10.1016/j.biopha.2018.09.026
  4. Al-Saleh, S., Alateeq, A., Alshaya, A. H., Al-Qahtani, A. S., Tulbah, H. I., Binhasan, M., ... & Abduljabbar, T. (2021). Influence of TiO2 and ZrO2 nanoparticles on adhesive bond strength and viscosity of dentin polymer: A physical and chemical evaluation. Polymers, 13(21), 3794. ISO 690. DOI: 10.3390/polym13213794
  5. Barkmeier, W. W., & Cooley, R. L. (1992). Laboratory evaluation of adhesive systems. Operative dentistry, 50-61.
  6. Bilen, H. B., & Çokakoğlu, S. (2020). Effects of one-step orthodontic adhesive on microleakage and bracket bond strength: An in vitro comparative study. International orthodontics, 18(2), 366-373. DOI: 10.1016/j.ortho.2020.01.010
  7. Brantley, W. A., & Eliades, T. (2001). Orthodontic materials: scientific and clinical aspects. American Journal of Orthodontics and dentofacial orthopedics, 119(6), 672-673.
  8. Bukhari, K., Alaydaa, R., Alhazmi, R., Alharbi, A., Alahmadi, O., Zafar, M., & Almarhoumi, A. (2025). Comparative analysis of shear bond strength and debonding characteristics of bioactive versus conventional orthodontic adhesives: An in-vitro study. The Saudi Dental Journal, 37(1), 3. ISO 690. DOI: 10.1007/s44445-025-00002-5
  9. Carreau, P. J. (1972). Rheological equations from molecular network theories. Transactions of the Society of Rheology, 16(1), 99-127.
  10. Condò, R., Mampieri, G., Cioffi, A., Cataldi, M. E., Frustaci, I., Giancotti, A., ... & Pasquantonio, G. (2021). Physical and chemical mechanisms involved in adhesion of orthodontic bonding composites: in vitro evaluations. BMC Oral Health, 21(1), 350. DOI: 10.1186/s12903-021-01715-9
  11. Cross, M. M. (1965). Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. Journal of colloid science, 20(5), 417-437. DOI: 10.1016/0095-8522(65)90022-X
  12. Fierascu, R. C. (2022). Incorporation of nanomaterials in glass ionomer cements – recent developments and future perspectives: a narrative review. Nanomaterials, 12(21), 3827. DOI: 10.3390/nano12213827
  13. Frankenberger, R., Lopes, M., Perdigão, J., Ambrose, W. W., & Rosa, B. T. (2002). The use of flowable composites as filled adhesives. Dental materials, 18(3), 227-238. DOI: 10.1016/S0109-5641(01)00040-9
  14. Hadi, N. J., Rydzkowski, T., Ali, Z. S., & Al-Jarwany, Q. A. (2025). Correlations Between Crystallinity, Rheological Behavior, and Short-Term Biodegradation for LDPE/Cellulose Composites with Potential as Packaging Films. Coatings, 15(4), 397. DOI: 10.3390/coatings15040397
  15. Hasan, L. A. (2021). Evaluation the properties of orthodontic adhesive incorporated with nanohydroxyapatite particles. The Saudi dental journal, 33(8), 1190-1196. DOI: 10.1016/j.sdentj.2021.01.001
  16. Hussein, A. H., & Yassir, Y. A. (2024). Development of a graphene oxide/hydroxyapatite-containing orthodontic primer: An in-vitro study. Materials Chemistry and Physics, 326, 129857. DOI: 10.1016/j.matchemphys.2024.129857
  17. Hwang, C., Choi, M. H., Kim, H. E., Jeong, S. H., & Park, J. U. (2022). Reactive oxygen species-generating hydrogel platform for enhanced antibacterial therapy. NPG Asia Materials, 14(1), 72. DOI: 10.1038/s41427-022-00420-5
  18. Kim, H., Giap, H. V., Kim, K. H., Yu, H. S., Kwon, J. S., Lee, H., & Lee, K. J. (2025). Shear bond strength of zirconia orthodontic brackets depending on surface pretreatment of bonding base. Scientific Reports, 15(1), 38348. DOI: 10.1038/s41598-025-22230-9
  19. Kiryk, S., Kiryk, J., Matys, J., & Dobrzyński, M. (2025). The Influence of Resin Infiltration on the Shear Bond Strength of Orthodontic Brackets: A Systematic Review and Meta-Analysis. Journal of Functional Biomaterials, 16(1), 32. DOI: 10.3390/jfb16010032
  20. Knox, J., Jones, M. L., Hubsch, P., & Middleton, J. (2000). The influence of orthodontic adhesive properties on the quality of orthodontic attachment. The Angle Orthodontist, 70(3), 241-246. DOI: 10.1043/0003-3219(2000)070%3C0241:TIOOAP%3E2.0.CO;2
  21. Kux, B. J., Bacigalupo, L. M., Scriba, A., Emmrich, M., & Jost-Brinkmann, P. G. (2022). Elution study of acrylic monomers from orthodontic materials using high performance liquid chromatography (HPLC). Journal of Orofacial Orthopedics/Fortschritte der Kieferorthopädie, 83(1), 34-47. DOI: 10.1007/s00056-021-00292-4
  22. Nikpour, S., Shahroudi, A. S., Saffarpour, A., Akhavan, A., & Sodagar, A. (2021). Shear Bond Strength of Self-Adhesive Composite Containing TiO2 and SiO2 Nanoparticles with an Additional Etching Step for Orthodontic Brackets Bonding to Enamel. Folia Medica, 63(6), 865-874. DOI: 10.3897/folmed.63.e56657
  23. Par, M., Gotovac, L., Horvat, S., Marovic, D., Tarle, Z., Tauböck, T. T., ... & Panduric, V. (2025). Comparing ISO 4049 and Fourier-transform infrared spectroscopy for assessing ambient light sensitivity in dental resin composites. Scientific reports, 15(1), 8455. DOI: 10.1038/s41598-025-93088-0
  24. Priyadarsini, S., Mukherjee, S., & Mishra, M. (2018). Nanoparticles used in dentistry: A review. Journal of oral biology and craniofacial research, 8(1), 58-67. DOI: 10.1016/j.jobcr.2017.12.004
  25. Sayed, M. E. (2025). Comparative Evaluation of Shear Bond Strength of Aesthetic Orthodontic Brackets Bonded to Aged Composite Restorative Resin Materials. Polymers, 17(5), 621. DOI: 10.3390/polym17050621
  26. Seyedmajidi, S., Rajabnia, R., & Seyedmajidi, M. (2018). Evaluation of antibacterial properties of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as a cellular scaffold of bone tissue. Journal of Laboratory Physicians, 10(03), 265-270. DOI: 10.4103/JLP.JLP_167_17
  27. Sharifi, N., Mohammadi, Z., Arab, S., Shojaee, M., Vafadoost, F., & Zakerzadeh, A. (2022). Shear bond strength of orthodontic brackets bonded with a self-adhering composite in dry and saliva-contaminated conditions. Frontiers in Dentistry, 19, 5. DOI: 10.18502/fid.v19i5.8548
  28. Wiertelak-Makała, K., Szymczak-Pajor, I., Bociong, K., & Śliwińska, A. (2023). Considerations about cytotoxicity of resin-based composite dental materials: A systematic review. International Journal of Molecular Sciences, 25(1), 152. DOI: 10.3390/ijms25010152
  29. Yan, J., Sun, H., Liu, Z., Yang, Z., Luo, T., Liao, X., ... & Hua, F. (2025). Fluorescent Orthodontic Adhesive With APTES-Modified ZnO Quantum Dots: Bond Strength, Cytocompatibility, and Clinical Feasibility. Orthodontics & Craniofacial Research. ISO 690. DOI: 10.1111/ocr.12932
  30. Zaki, S. S., Ghorab, S. M., & Shamaa, M. S. (2023). Antioxidant effect on shear bond strength of orthodontic brackets after tooth bleaching: a scoping review of in vitro studies. International Orthodontics, 21(3), 100777. DOI: 10.1016/j.ortho.2023.100777
Language: English
Page range: 406 - 418
Submitted on: Nov 20, 2025
|
Accepted on: Dec 9, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ayah Ibrahim, Ammar Kazem, Nizar Hadi, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.