References
- Andújar, D., Moreno, H., Bengochea-Guevara, J. M., de Castro, A., & Ribeiro, A., 2019. Aerial imagery or on-ground detection? An economic analysis for vineyard crops. Computers and Electronics in Agriculture, 157, 398–407.
- Bonds, J. A., Pai, N., Hovinga, S., Stump, K., Haynie, R., Flack, S., & Bui, T., 2024. Spray drift, operator exposure, crop residue and efficacy: early indications for equivalency of uncrewed aerial spray systems with conventional application techniques. Journal of the ASABE, 67, 27–41.
- Damalas, C. A., & Eleftherohorinos, I. G., 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. DOI: 10.3390/ijerph8051402
- Elhalwagy, M. E. A., Farid, H. E. A., Gh, F. A. A., Ammar, A. E., & Kotb, G. A. M., 2010. Risk assessment induced by knapsack or conventional motor sprayer on pesticides applicators and farm workers in cotton season. Environmental Toxicology and Pharmacology, 30(2), 110–115. DOI: 10.1016/j.etap.2010.04.004
- Felkers, E., Kuster, C. J., Hamacher, G., Anft, T., & Kohle, M., 2024. Pesticide exposure of operators during mixing and loading a drone: Towards a stratified exposure assessment. Pest Management Science, Advance online publication. DOI: 10.1002/ps.8574
- Fountas, S., Espejo-Garcia, B., Kasimati, A., Mylonas, N., & Darra, N., 2020. The future of digital agriculture: Technologies and opportunities. IT Professional, 22(1), 24–28.
- Gao, B., Sasturain, J., Wiemann, C., Hewitt, N. J., Gan, W. J., Wang, G., Lan, Y., & Blaschke, U., 2025. Measurement of bystander dermal exposure resulting from drift after drone application under three crop treatment scenarios. ACS Agricultural Science & Technology, 5, 542–551.
- Kim, C. J., Yuan, X., Kim, M., Kyung, K. S., & Noh, H. H., 2023. Monitoring and risk analysis of residual pesticides drifted by unmanned aerial spraying. Scientific Reports, 13(1), 9975. DOI: 10.1038/s41598-023-36822-w
- Kuster, C. J., Kluxen, F. M., Felkers, E., Morgan, N., Hewitt, N. J., & Durand-Reville, J., 2024. Efficiency of working coveralls and chemical resistant gloves in reducing operator exposure to pesticides. Journal of Consumer Protection and Food Safety, 19, 1–10.
- Kuster, C. J., Kohler, M., Hovinga, S., Timmermann, C., Hamacher, G., Buerling, K., Chen, L., Hewitt, N. J., & Anft, T., 2023. Pesticide exposure of operators from drone application: A field study with comparative analysis to handheld data from exposure models. ACS Agricultural Science & Technology, 3, 1125–1130. DOI: 10.1021/acsagscitech.3c00253
- Maghsoudi, H., Minaei, S., Ghobadian, B., & Masoudi, H., 2015. Ultrasonic sensing of pistachio canopy for low-volume precision spraying. Computers and Electronics in Agriculture, 112, 149–160.
- Papadopoulos, G., Arduini, S., Uyar, H., Psiroukis, V., Kasimati, A., & Fountas, S., 2024. Economic and environmental benefits of digital agricultural technologies in crop production: A review. Smart Agricultural Technology, 8, 100441. DOI: 10.1016/j.saat.2024.100441
- Pietraszek, J., Dwornicka, R., Szczotok, A., 2016. The bootstrap approach to the statistical significance of parameters in the fixed effects model. In Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016), pp.6061-6068. DOI: 10.7712/100016.2240.9206
- Radek, N., Pietraszek, J., Radek, M., Paraska, O., 2020. The influence of plasma cutting parameters on the geometric structure of cut surfaces. Materials Res. Proc., 17, 132-137. DOI: 10.21741/9781644901038-20
- Raditsela, R., Sharp, K.L. & Bevan-Dye, A.L.. 2025. Safety culture in focus: comparing employee perceptions across small and medium-sized manufacturing SMEs in South Africa. Production Engineering Archives, 31(2), 238-246. DOI: 10.30657/pea.2025.31.24
- Sá, J.C., Oliveira, A., Hines, P., Mourão, F., McDermott, O., Marques, P.A., Zouari, A., Pathania, A. & Ulewicz, R. 2025. The effects of Lean and people’s behaviours on Occupational Safety. Production Engineering Archives, 31(1), 1-14. https://doi.org/10.30657/pea.2025.31.1
- Safaeinejad, M., Ghasemi-Nejad Raeini, M., & Taki, M., 2025. Reducing energy and environmental footprint in agriculture: A study on drone spraying vs. conventional methods. PLoS One, 20(6), e0323779. DOI: 10.1371/journal.pone.0323779
- Szczyrba, A., & Szataniak, E. 2024. Integrated approach to occupational safety in the production of ready-to-eat meals and canned meat: Challenges and solutions. System Safety: Human – Technical Facility – Environment, 6(1), 175–183. https://doi.org/10.2478/czoto-2024-0019
- Szczyrba, A., & Szataniak, M. (2023). Decoding consumer preferences in food packaging with the Kano model. System Safety: Human – Technical Facility – Environment, 5(1), 83–92. https://doi.org/10.2478/czoto-2023-0010
- Tudi, M., Ruan, D., Wang, L., Lyu, J., Sadler, R., Connell, C., Chu, C., & Phung, D. T., 2021. Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18, 1112.
- Tullberg, J. N., 2014. CTF and global warming. In Proceedings of the 5th Australian Controlled Traffic and Precision Agriculture Conference, p. 214.
- Verdouw, C., Sundmaeker, H., Tekinerdogan, B., Conzon, D., & Montanaro, T., 2019. Architecture framework of IoT-based food and farm systems: A multiple case study. Computers and Electronics in Agriculture, 165, 104939.
- Wolniak, R., 2019. Problems of use of FMEA method in industrial enterprise. Production Engineering Archives, 23, 12–17. DOI: 10.30657/pea.2019.23.02