References
- Klus, H., M. Kunze, S. König, and E. Pöschl: Smokeless Tobacco – An Overview; Beitr. Tabakforsch. Int. 23 (2009) 248–276. DOI: 10.2478/cttr-2013-0865
- Miller, J.H., T. Danielson, Y.B. Pithawalla, A.P. Brown, C. Wilkinson, K. Wagner, and F. Aldeek: Method Development and Validation of Dissolution Testing for Nicotine Release from Smokeless Tobacco Products Using Flow-Through Cell Apparatus and UPLC-PDA; J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1141 (2020) 122012. DOI: 10.1016/j.jchromb.2020.122012
- Aldeek, F., N. McCutcheon, C. Smith, J.H. Miller, and T.L. Danielson: Dissolution Testing of Nicotine Release from OTDN Pouches: Product Characterization and Product-to-Product Comparison; Separations 8 (2021) 7. DOI: 10.3390/separations8010007
- Knopp, M.M., N. McCutcheon, A.E. Masser, and M. Staaf: Introducing a Novel Biorelevant In Vitro Dissolution Method for the Assessment of Nicotine Release from Oral Tobacco-Derived Nicotine (OTDN) and Snus Products; Separations 9 (2022) 52. DOI: 10.3390/separations9020052
- Qian, F., J. Zhang, S. Sun, Y. Zong, Y. Li, Z. Qu, J. Ma, and B. He: Nicotine Sustained-Release Type Mouth Insertion Tobacco Tablet; Patent number CN101254023, Patent assigned by Zhengzhou Tobacco Research Institute of CNTC, 2008. Available at:
https://patents.google.com/patent/CN101254023A/en?oq=CN101254023 - Yang, J., Y. Wu, L. Yang, P. Lei, Q. Gao, Q. Sheng, Y. Duan, Y. Zhao, Y. Chen, S. Zhang, Q. Du, and H. Li: Preparation, Characterization and Sustained-Release Properties of Nicotinic Gentisate; Acta Tabacaria Sin. 26 (2020) 15–22. DOI: 10.16472/j.chinatobacco.2018.257
- Zheng, L., S. Zhang, Z. Ying, J. Liu, Y. Zhou, and F. Chen: Engineering of Aerogel-Based Biomaterials for Biomedical Applications; Int. J. Nanomed. 15 (2020) 2363–2378. DOI: 10.2147/IJN.S238005
- S.S. Sonu, N. Rai, and I. Chauhan: Multifunctional Aerogels: A Comprehensive Review on Types, Synthesis and Applications of Aerogels; J. Sol-Gel Sci. Technol. 105 (2023) 324–336. DOI: 10.1007/s10971-022-06026-1
- Guenther, U., I. Smirnova, and R.H.H. Neubert: Hydrophilic Silica Aerogels as Dermal Drug Delivery Systems-Dithranol as a Model Drug; Eur. J. Pharm. Biopharm. 69 (2008) 935–942. DOI: 10.1016/j.ejpb.2008.02.003
- López-Iglesias, C., A.M. Casielles, A. Altay, R. Bettini, C. Alvarez-Lorenzo, and C.A. García-González: From the Printer to the Lungs: Inkjet-Printed Aerogel Particles for Pulmonary Delivery; Chem. Eng. J. 357 (2019) 559–566. DOI: 10.1016/j.cej.2018.09.159
- Marin, M.A., R.R. Mallepally, and M.A. McHugh: Silk Fibroin Aerogels for Drug Delivery Applications; J. Supercrit. Fluids 91 (2014) 84–89. DOI: 10.1016/j.supflu.2014.04.014
- Wang, D., Z. Li, L. Yang, J. Zhang, Y. Wei, Q. Feng, and Q. Wei: Hydrogel Electrolyte Based on Sodium Polyacrylate/KOH Hydrogel Reinforced with Bacterial Cellulose Aerogel for Flexible Supercapacitors; Chem. Eng. J. 454 (2023) 140090. DOI: 10.1016/j.cej.2022.140090
- Wang, Q., D. Tian, J. Hu, M. Huang, F. Shen, Y. Zeng, G. Yang, Y. Zhang, and J. He: Harvesting Bacterial Cellulose from Kitchen Waste to Prepare Superhydrophobic Aerogel for Recovering Waste Cooking Oil toward a Closed-Loop Biorefinery; ACS Sustain. Chem. Eng. 8 (2020) 13400–13407. DOI: 10.1021/acssuschemeng.0c04212
- Peydayesh, M., M.K. Suter, S. Bolisetty, S. Boulos, S. Handschin, L. Nyström, and R. Mezzenga: Amyloid Fibrils Aerogel for Sustainable Removal of Organic Contaminants from Water; Adv. Mater. 32 (2020) e1907932. DOI: 10.1002/adma.201907932
- Cheng, Z., R. Yang, X. Liu, X. Liu, and H. Chen: Green Synthesis of Bacterial Cellulose via Acetic Acid Pre-Hydrolysis Liquor of Agricultural Corn Stalk Used as Carbon Source; Bioresour. Technol. 234 (2017) 8–14. DOI: 10.1016/j.biortech.2017.02.131
- Zhang, T.T., Y.J. Feng, Z.C. Yang, Q.C. Wen, G.J. Wang, S.T. Ma, H.Q. Li, and Z. Zhang: Bacterial Cellulose Production by Fermentation Using Tobacco Waste as Culture Medium; Food Mach. 36 (2020) 198–202. DOI: 10.13652/j.issn.1003-5788.2020.06.036
- Salihu, R., S.I.A. Razak, N.A. Zawawi, M.R.A. Kadir, N.I. Ismail, N. Jusoh, M.R. Mohamad, and N.H.M. Nayan: Citric Acid: A Green Cross-Linker of Biomaterials for Biomedical Applications; Eur. Polym. J. 146 (2021) 110271. DOI: 10.1016/j.eurpolymj.2021.110271
- Dinesh, H. Wang, and J. Kim: Citric Acid-Crosslinked Highly Porous Cellulose Nanofiber Foam Prepared by an Environment-Friendly and Simple Process; Glob. Chall. 6 (2022) 2200090. DOI: 10.1002/gch2.202200090
- Almeida, A.P., J.N. Saraiva, G. Cavaco, R.P. Portela, C.R. Leal, R.G. Sobral, and P.L. Almeida: Crosslinked Bacterial Cellulose Hydrogels for Biomedical Applications; Eur. Polym. J. 177 (2022) 111438. DOI: 10.1016/j.eurpolymj.2022.111438
- Li, P., S.T. Zeng, J.X. Zhang, Y.H. Shen, S.H. Sun, Y.L. Zong, J.P. Xie, D.Z. Wang, and J. Yang: Real-Time Monitoring of Nicotine Release Behavior from Smokeless Tobacco (Snus) Based on Fiber Optic Sensing Technology; Dissolut. Technol. 26 (2019) 24–30. DOI: 10.14227/DT260419P24
- Li, P., J. Zhang, S.H. Sun, J.P. Xie, and Y.L. Zong: A Novel Model Mouth System for Evaluation of In Vitro Release of Nicotine from Moist Snuff; Chem. Cent. J. 7 (2013) 176. DOI: 10.1186/1752-153X-7-176
- Wang, C., J. Yang, L. Yang, Y. Duan, Y. Zhao, H. Zhao, J. Wu, X. Gong, and Y. Chen: Study on Release of Nicotine from Bagged Oral Tobacco Products by Simulated Dissolution Device; Acta Tabac. Sin. 25 (2019) 8–14. DOI: 10.16472/j.chinatobacco.2018.152
- Yu, Q., L. Yang, S. Wang, L. Zhang, and D. Sun: Citric Acid Cross-Linked Regenerated Bacterial Cellulose as Biodegradable Film for Food Packaging; Cellulose 30 (2023) 10273–10284. DOI: 10.1007/s10570-023-05500-5
- Pastor, E.L., E. Reguera-Nuñez, E. Matveeva and M. Garcia-Fuentes: Pore Size is a Critical Parameter for Obtaining Sustained Protein Release from Electrochemically Synthesized Mesoporous Silicon Microparticles; PeerJ 3 (2015) e1277. DOI: 10.7717/peerj.1277
- Aldeek, F., J.H. Miller, and T. Danielson: Evaluation of Dissolution Release Profiles of Nicotine and Three Distinct Flavor Markers in Loose Moist Smokeless Tobacco Products; Contrib. Tob. Nicotine Res. 33 (2024) 157–163. DOI: 10.2478/cttr-2024-0005