References
- Baker, R.R.: Temperature Distribution Inside a Burning Cigarette; Nature 247 (1974) 405–406. DOI: 10.1038/247405a0
- Baker, R.R.: Smoke Generation Inside a Burning Cigarette: Modifying Combustion to Develop Cigarettes that May be Less Hazardous to Health; Prog. Energ. Comb. 32 (2006) 373–385. DOI: 10.1016/j.pecs.2006.01.001
- Baker, R.R.: Contributions to the Draw Resistance of a Burning Cigarette; Beitr. Tabakforsch. 8 (1975) 124–131. DOI: 10.2478/cttr-2013-0367
- Dwyer, R.: Predicting the Pressure Drops Across Cellulose Acetate Filters; Beitr. Tabakforsch. Int. 13 (1986) 157–168. DOI: 10.2478/cttr-2013-0565
- Dwyer, R. and P. Chen: Prediction of Pressure Drop and Ventilation in a Lit Cigarette; Beitr. Tabakforsch. Int. 18 (1999) 205–211. DOI: 10.2478/cttr-2013-0684
- Dwyer, R., P. Chen, and R. Wasyk: A Mathematical Scheme for Calculating Flows and Pressure Drops in Lit and Unlit Cigarettes; Beitr. Tabakforsch. Int. 19 (2001) 189–203. DOI: 10.2478/cttr-2013-0707
- Eitzinger, B.: On the Estimation of Permeabilities and Draw Resistances of Cigarette Components; Beitr. Tabakforsch. Int. 21 (2004) 25–31. DOI: 10.2478/cttr-2013-0768
- Eitzinger, B. and G. Ederer: The Use of Nonlinear Constitutive Equations to Evaluate Draw Resistance and Filter Ventilation; Beitr. Tabakforsch. Int. 19 (2001) 177–188. DOI: 10.2478/cttr-2013-0706
- Li, B., H.R. Pang, J. Xing, B. Wang, C. Liu, K.G. McAdam, and J.P. Xie: Effect of Reduced Ignition Propensity Paper Bands on Cigarette Burning Temperatures; Thermochim. Acta 579 (2014) 93–99. DOI: 10.1016/j.tca.2014.01.011
- Li, B., H.R. Pang, L.C. Zhao, B. Wang, C. Liu, K.G. McAdam, and D.S. Luo: Quantifying Gas-Phase Temperature Inside a Burning Cigarette; Ind. Eng. Chem. Res. 53 (2014) 7810–7820. DOI: 10.1021/ie5009822
- Li, B., L. Zhao, C. Yu, C. Liu, Y. Jing, H. Pang, B. Wang, and K.G. McAdam: Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette; Beitr. Tabakforsch. Int. 26 (2015) 191–203. DOI: 10.1515/cttr-2015-0007
- Cui, H., S. Ehlert, F. Xie, J. Heide, N. Deng, B. Li, C. Liu, K.G. McAdam, A. Walte, and R. Zimmermann: Integration of Time and Spatially Resolved In-Situ Temperature and Pressure Measurements with Soft Ionisation Mass Spectrometry Inside a Burning Superslim Cigarette; J. Anal. Appl. Pyrol.135 (2018) 310–318. DOI: 10.1016/j.jaap.2018.08.022
- Deng, N., S. Ehlert, H. Cui, F. Xie, J. Heide, B. Li, C. Liu, K.G. McAdam, A. Walte, and R. Zimmermann: Integration of Time and Spatially Resolved In-Situ Temperature and Pressure Measurements With Soft Ionisation Mass Spectrometry Inside Burning Super-slim and King-Size Cigarettes; Beitr. Tabakforsch. Int. 29 (2020) 44–54. DOI: 10.2478/cttr-2020-0005
- Hertz-Schuenemann, R., Ehlert, S., Streibel, T., Liu, C., McAdam, K., Baker, R.R., and Zimmermann, R.: High-Resolution Time and Spatial Imaging of Tobacco and its Pyrolysis Products During a Cigarette Puff by Microprobe Sampling Photoionisation Mass Spectrometry; Anal. Bioanal. Chem. 407 (2015) 2293–2299. DOI: 10.1007/s00216-014-8447-7
- Zimmermann, R., Hertz-Schuenemann, S. Ehlert, C. Liu, K.G. McAdam, R. Baker, and T. Streibel: Highly Time-Resolved Imaging of Combustion and Pyrolysis Product Concentrations in Solid Fuel Combustion: NO Formation in a Burning Cigarette; Anal. Chem. 87 (2015) 1711–1717. DOI: 10.1021/ac503512a
- Li, B., L.C. Zhao, L. Wang, C. Liu, K.G. McAdam, and B. Wang: Gas-Phase Pressure and Flow Velocity Fields Inside a Burning Cigarette During a Puff; Thermochim. Acta 623 (2016) 22–28. DOI: 10.1016/j.tca.2015.11.006
- Li, B., X. Cui, L. Zhao, L. Wang, G. Xie, and N. Deng: Pressure and Gas Flow Distribution Inside the Filter of a Non-Filter Ventilated Lit Cigarette During Puffing; Beitr. Tabakforsch. Int. 27 (2017) 113–124. DOI: 10.1515/cttr-2017-001218
- Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA): Heated Tobacco Products (HTPs): Standardized Terminology and Recommendations for the Generation and Collection of Emissions (July 2020). Available at: https://www.coresta.org/sites/default/files/technical_documents/main/HTP-259-CTR_Std-Terminology-Recommendations-HTP-Emissions_July2020.pdf (accessed April 2, 2022)
- Caputi, T.L.: Industry Watch: Heat-Not-Burn Tobacco Products are About to Reach Their Boiling Point; Tob. Control 26 (2017) 609–610. DOI: 10.1136/tobaccocontrol-2016-053264
- Caputi, T.L., Leas, E., Dredze, M., Cohen, J.E., and Ayers, J.W.: They’re Heating Up: Internet Search Query Trends Reveal Significant Public Interest in Heat-Not-Burn Tobacco Products; PloS One 12 (2017). DOI: 10.1371/journal.pone.0185735
- La Torre, G., B. Dorelli, M. Ricciardi, M.C. Grassi, and A. Mannocci: Smoking E-CigaRette and HEat-noT-burn Products: Validation of the SECRHET Questionnaire; Clin. Ter. 170 (2019) e247–e251. DOI: 10.7417/CT.2019.2142
- Ratajczak, A., P. Jankowski, P. Strus, and W. Feleszko: Heat-Not-Burn Tobacco Product – A New Global Trend: Impact of Heat-Not-Burn Tobacco Products on Public Health, a Systematic Review; Int. J. Environ. Res. Public Health 17 (2020) 409. DOI: 10.3390/ijerph17020409
- Phillips, B., E. Veljkovic, S. Boue, W.K. Schlage, G. Vuillaume, F. Martin, B. Titz, P. Leroy, A. Buettner, A. Elamin, A. Oviedo, M. Cabanski, H. De Leon, E. Guedj, T. Schneider, M. Talikka, N.V. Ivanov, P. Vanscheeuwijck, M.C. Peitsch, and J. Hoeng: An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe−/− Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes; Toxicol. Sci. 149 (2016) 411–432. DOI: 10.1093/toxsci/kfv243
- van der Toorn, M., S. Frentzel, H. De Leon, D. Goedertier, M.C. Peitsch, and J. Hoeng: Aerosol From a Candidate Modified Risk Tobacco Product Has Reduced Effects on Chemotaxis and Transendothelial Migration Compared to Combustion of Conventional Cigarettes; Food Chem. Toxicol. 86 (2015) 81–87. DOI: 10.1016/j.fct.2015.09.016
- Kim, M.: Philip Morris International Introduces New Heat-Not-Burn Product, IQOS, in South Korea; Tob. Control 27 (2018) e76–e78. DOI: 10.1136/tobaccocontrol-2017-053965
- Tabuchi, T., S. Gallus, T. Shinozaki, T. Nakaya, N. Kunugita, and B. Colwell: Heat-Not-Burn Tobacco Product Use in Japan: Its Prevalence, Predictors and Perceived Symptoms From Exposure to Secondhand Heat-Not-Burn Tobacco Aerosol; Tob. Control 27 (2018) e25–e33. DOI: 10.1136/tobaccocontrol-2017-053947
- Zuber, G., C. Mayer, D. Sona, and A. Luwe: Aerosol-Generated Items with Aerosol Cooling Elements; China Patent 104203015A, Philip Morris Products, Neuchatel (Application Date: December 28, 2012).
- Cozzani, V., F. Barontini, T. McGrath, B. Mahler, M. Nordlund, M. Smith, J.P. Schaller, and G. Zuber: An Experimental Investigation Into the Operation of an Electrically Heated Tobacco System; Thermochim. Acta 684 (2020) 178475. DOI: 10.1016/j.tca.2019.178475
- Eaton, D., B. Jakaj, M. Forster, J. Nicol, E. Mavropoulou, K. Scott, C. Liu, K.G. McAdam, J. Murphy, and C.J. Proctor: Assessment of Tobacco Heating Product THP1.0. Part 2: Product Design, Operation and Thermophysical Characterisation; Regul. Toxicol. Pharmacol. 93 (2018) 4–13. DOI: 10.1016/j.yrtph.2017.09.009
- Cooperation Center for Scientific Research Relative to Tobacco (CORESTA): Recommended Method Nº 84 – Determination of Glycerin, Propylene Glycol, Water, and Nicotine in the Aerosol of E-Cigarettes by Gas Chromatographic Analysis; October 2021, Fourth Edition. Available at: https://www.coresta.org/determination-glycerin-propylene-glycol-water-and-nicotine-aerosol-e-cigarettes-gas-chromatographic (accessed October 2022)
- Cooperation Center for Scientific Research Relative to Tobacco (CORESTA): Recommended Method Nº 57 – Determination of Water in Tobacco and Tobacco Products by Gas Chromatographic Analysis; August 2018, Second Edition. Available at: https://www.coresta.org/determination-water-tobacco-and-tobacco-products-gas-chromatographic-analysis-29180.html (accessed October 2022)
- Cooperation Center for Scientific Research Relative to Tobacco (CORESTA): Recommended Method Nº 87 – Determination of Nicotine in Tobacco Products by GC-MS; April 2020, Second Edition. Available at: https://www.coresta.org/determination-nicotine-tobacco-products-gc-ms-33537.html (accessed October 2022)
- Cooperation Center for Scientific Research Relative to Tobacco (CORESTA): Recommended Method Nº 74 – Determination of Selected Carbonyls in Mainstream Cigarette Smoke by High Performance Liquid Chromatography (HPLC); August 2019, Fifth Edition. Available at: https://www.coresta.org/determination-selected-carbonyls-mainstream-cigarette-smoke-high-performance-liquid-chromatography (accessed October 2022)
- Behar, R.Z., W. Luo, S.C. Lin, Y. Wang, J. Valle, J.F. Pankow, and P. Talbot: Distribution, Quantification and Toxicity of Cinnamaldehyde in Electronic Cigarette Refill Fluids and Aerosols; Tob. Control 25 (2016) ii94–ii102. DOI: 10.1136/tobaccocontrol-2016-053224
- Omaiye, E.E., K.J. McWhirter, W. Luo, P. Tierney, J.F. Pankow, and P. Talbot: High Concentrations of Flavor Chemicals are Present in Electronic Cigarette Refill Fluids; Sci. Rep. 9 (2019) 1–9. DOI: 10.1038/s41598-019-39550-2
- Alderman, S.L. and B.J. Ingebrethsen: Characterization of Mainstream Cigarette Smoke Particle Size Distributions from Commercial Cigarettes Using a DMS500 Fast Particulate Spectrometer and Smoking Cycle Simulator; Aerosol Sci. Technol. 45 (2011) 1409–1421. DOI: 10.1080/02786826.2011.596862
- Li, Y., H. Cui, L. Chen, M. Fan, J. Cai, J. Guo, C.U. Yurteri, X. Si, S. Liu, F. Xie, and J. Xie: Modeled Respiratory Tract Deposition of Smoke Aerosol from Conventional Cigarettes, Electronic Cigarettes and Heat-Not-Burn Products; Aerosol Air Qual. Res. 21 (2021) 200241. DOI: 10.4209/aaqr.200241
- Gasparyan, H., D. Mariner, C. Wright, J. Nicol, J. Murphy, C. Liu, and C. Proctor: Accurate Measurement of Main Aerosol Constituents from Heated Tobacco Products (HTPs): Implications for a Fundamentally Different Aerosol; Regul. Toxicol. Pharmacol. 99 (2018) 131–141. DOI: 10.1016/j.yrtph.2018.09.016
- Schaller, J.-P., D. Keller, L. Poget, P. Pratte, E. Kaelin, D. McHugh, G. Cudazzo, D. Smart, A.R. Tricker, L. Gautier, M. Yerly, R.R. Pires, S. Le Bouhellec, D. Ghosh, I. Hofer, E. Garcia, P. Vanscheeuwijck, and S. Maeder: Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical Composition, Genotoxicity, Cytotoxicity, and Physical Properties of the Aerosol; Regul. Toxicol. Pharmacol. 81 (2016) S27–S47. DOI: 10.1016/j.yrtph.2016.10.001
- Kim, Y.-H. and Y.-J. An: Development of a Standardized New Cigarette Smoke Generating (SNCSG) System for the Assessment of Chemicals in the Smoke of New Cigarette Types (Heat-Not-Burn (HNB) Tobacco and Electronic Cigarettes (E-Cigs)); Environ. Res. 185 (2020) 109413. DOI: 10.1016/j.envres.2020.109413
- Bekki, K., Y. Inaba, S. Uchiyama, and N. Kunugita: Comparison of Chemicals in Mainstream Smoke in Heat-Not-Burn Tobacco and Combustion Cigarettes; J. UOEH 39 (2017) 201–207. DOI: 10.7888/juoeh.39.201
- Liu, C., S. Feng, J. van Heemst, and K.G. McAdam: New Insights Into the Formation of Volatile Compounds in Mainstream Cigarette Smoke; Anal. Bioanal. Chem. 396 (2010) 1817–1830. DOI: 10.1007/s00216-010-3457-6
- Marinov, N.M., W.J. Pitz, C.K. Westbrook, A.M. Vincitore, M.J. Castaldi, S.M. Senkan, and C.F. Melius: Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame; Combust. Flame 114 (1998) 192–213. DOI: 10.1016/S0010-2180(97)00275-7