Have a personal or library account? Click to login
A Comprehensive Study of Biodegradation of Cigarette Filters and Bidi Butts Cover

A Comprehensive Study of Biodegradation of Cigarette Filters and Bidi Butts

Open Access
|Dec 2022

References

  1. Bureau of Indian Standards (BIS): IS 10335:2016 - Tobacco and Tobacco Products - Glossary of Terms (Third Revision); New Delhi, India, 2016.
  2. Ganster, J. and H.-P. Fink: Cellulose and Cellulose Acetate; in: Bio-Based Plastics: Materials and Applications, edited by S. Kabasci, Fraunhofer-Institute for Environmental, Safety, and Energy Technology UMSICHT, Germany, 2014, pp. 35–592. DOI: 10.1002/9781118676646.ch3
  3. Zhou, X., X. Lin, K.L. White, S. Lin, H. Wu, S. Cao, L. Huang, and L. Chen: Effect of the Degree of Substitution on the Hydrophobicity of Acetylated Cellulose for Production of Liquid Marbles; Cellulose 23 (2016) 811–821. DOI: 10.1007/s10570-015-0856-z
  4. Puls, J., S.A. Wilson, and D. Hölter: Degradation of Cellulose-Acetate-Based Materials: A Review; J. Polym. Environ. 19 (2011) 152–165. DOI: 10.1007/s10924-010-0258-0
  5. Ho, L.C., D.D. Martin, and W.C. Lindemann: Inability of Microorganisms to Degrade Cellulose Acetate Reverse-Osmosis Membranes; Appl. Environ. Microbiol. 45 (1983), 418–427. DOI: 10.1128/aem.45.2.418-427.1983
  6. Komarek, R.J., R.M. Gardner, C.M. Buchanan, and S.C. Gedon: Biodegradation of Radiolabelled Cellulose Acetate and Cellulose Propionate; J. Appl. Polymer Sci. 50 (1993) 1739–1746. DOI: 10.1002/APP.1993.070501009
  7. Buchanan, C.M., R.M. Gardner, and R.J. Komarek: Aerobic Biodegradation of Cellulose Acetate; J. Appl. Polymer Sci. 47 (1993) 1709–1719. DOI: 10.1002/app.1993.070471001
  8. Gu, J.D., D.T. Eberiel, S.P. McCarthy, and R.A. Gross: Cellulose Acetate Biodegradability Upon Exposure to Simulated Aerobic Composting and Anaerobic Bioreactor Environments; J. Environ. Polym. Degr. 1 (1993) 143–153. DOI: 10.1007/BF01418207
  9. Bonanomi, G., G. Incerti, G. Cesarano, S.A. Gaglione, and V. Lanzotti: Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR; PLOS ONE (2015) 1–16. DOI: 10.1371/journal.pone.0117393
  10. Bonanomi, G., G. Maisto, A. De Marco, G. Cesarano, M. Zotti, P. Mazzei, G. Libralato, A. Staropoli, A. Siciliano, F. De Filippis, A. La Storia, A. Piccolo, F. Vinale, A. Crasto, M. Guida, D. Ercolini, and G. Incerti: The Fate of Cigarette Butts in Different Environments: Decay Rate, Chemical Changes and Ecotoxi-city Revealed by a 5-Years Decomposition Experiment; Environ. Pollut. 261 (2020) 1–11. DOI: 10.1016/j.envpol.2020.114108
  11. Yadav, N. and M. Hakkarainen: Degradable or not? Cellulose Acetate as a Model for Complicated Interplay Between Structure, Environment and Degradation; Chemosphere 265 (2021) 128–731. DOI: 10.1016/j.chemosphere.2020.128731
  12. International Organization for Standardization (ISO): ISO 14855-1:2012 Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions – Method by Analysis of Evolved Carbon Dioxide – Part 1: General Method; ISO, Geneva, Switzerland, 2012.
  13. American Society for Testing and Materials (ASTM): ASTM D-5338:2015 Standard Test Method for Determining the Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions, Incorporating Thermophilic Temperatures; ASTM, West Conshohocken, PA, USA. DOI: 10.1520/D5338-15R21
  14. American Society for Testing and Materials (ASTM): ASTM D-6400:2019 Standard Specification for Labelling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities; ASTM, West Conshohocken, PA, USA. DOI: 10.1520/D6400-19
  15. European Committee for Standardization (CEN): EN 13432:2000 Packaging — Requirements for Packaging Recoverable Through Composting and Biodegradation – Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging; CEN, Brussels, Belgium, 2000. DOI: 10.31030/9010637
  16. Deutsches Institut für Normung (DIN): Bestimmung der vollständigen aeroben Bioabbaubarkeit von Kunststoff-Materialien unter den Bedingungen kontrollierter Kompostierung - Verfahren mittels Analyse des freigesetzten Kohlenstoffdioxides - Teil 1: Allgemeines Verfahren [Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions - Method by analysis of evolved carbon dioxide - Part 1: General method ]; DIN, Berlin, Germany, 2012. DOI: 10.31030/1939267
  17. International Organization for Standardization (ISO): ISO 17088:2021 Plastics – Organic Recycling – Specifications for Compostable Plastics; ISO, Geneva, Switzerland, 2021.
  18. European Committee for Standardization (CEN): EN ISO 14855-1:2012 Determination of the Ultimate Aerobic Biodegradability and Disintegration of Plastic Materials Under Controlled Composting Conditions. Method by Analysis of Evolved Carbon Dioxide; European Standards.
  19. International Organization for Standardization (ISO): ISO 17556:2019 Plastics — Determination of the Ultimate Aerobic Biodegradability in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved; ISO, Geneva, Switzerland, 2019.
  20. British Standards Institution (BSI): PAS 9017:2020 Plastics – Biodegradation of Polyolefin in an Open-Air Terrestrial Environment – Specification; The British Standards Institution, London, UK, 2020.
  21. Japanese Institute for Standardization (JIS): JIS K6953-1:2011 Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions — Method by Analysis of Evolved Carbon Dioxide – Part 1: General Method; JSA, Tokyo, Japan, 2011.
  22. Bureau of Indian Standards (BIS): IS 5402 Part 1:2021: Microbiology of Food and Animal Feeding Stuffs — Horizontal Method for the Enumeration of Micro-Organisms — Colony-Count Technique at 30 °C; Bureau of Indian Standards, New Delhi, India, 2021.
  23. Bureau of Indian Standards (BIS): IS 5403:1999: Method for Yeast and Mould Count of Foodstuffs and Animal Feeds; Bureau of Indian Standards, New Delhi, India, 1999.
  24. International Organization for Standardization (ISO): ISO 3308:2012. Routine Analytical Cigarette-Smoking Machine — Definitions and Standard Conditions; ISO, Geneva, Switzerland, 2012.
  25. International Organization for Standardization (ISO): ISO 17175:2012. Bidis — Determination of Total and Nicotine-Free Dry Particulate Matter Using Linear Routine Analytical Smoking Machine; ISO, Geneva, Switzerland, 2012.
  26. Kenney, J.F. and E.S. Keeping: Mathematics of Statistics, Part. 2; 2nd edition, Van Nostrand, Princeton, NJ, USA, 1951.
  27. Hintersteiner, I., M. Himmelsbach, and W.W. Buchberger: Characterization and Quantitation of Polyolefin Microplastics in Personal-Care Products Using High-Temperature Gel-Permeation Chromatography; Anal. Bioanal. Chem. 407 (2015) 1253–1259. DOI: 10.1007/s00216-014-8318-2
  28. Parani. K. and M. Sivasankari: Degradation of Tendu Leaf Extract Using Pleurotus djamor; Int. J. Recent Res. Aspects 6 (2019) 20–24.
  29. Cerdia De-Tow: Speeding of Biodegradation; Available at https://www.cerdia.com/en/products-and-innovation.html
Language: English
Page range: 151 - 161
Submitted on: Dec 1, 2021
Accepted on: Sep 15, 2022
Published on: Dec 10, 2022
Published by: Institut für Tabakforschung GmbH
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Sudesna Parida, Santhosh Prabhu, Tarur Konikkaledom Dinesh, Kamal Kumar Tyagi, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.