References
- Standardization Administration of the P. R. China: SAC/TC 339, GB/T 9833.6-2013, Compressed Tea — Part 6: Jin Tea; China, 2013.
- Zhong, J., J.H.Huang, T. Yang, X. Zhang, and Z.F. Zhao: Optimization Study of Tea Winnowing Machine; J. Tea Sci. 33 (2013) 576–583. DOI: 10.13305/j.cnki.jts.2013.06.004
- International Organization for Standardization (ISO): ISO 12195:1995. Threshed Tobacco — Determination of Stem Content, Geneva, Switzerland, 1995.
- Standardization Administration of the P. R. China: SAC/TC 339, YC/T 147–2010 Threshed Tobacco — Quality Inspection, China, 2010.
- Zhu, W.K., L.Y. Chen, B. Wang, and Z.G. Wang: Online Detection in the Separation Process of Tobacco Leaf Stems as Biomass Byproducts Based on Low Energy X-Ray Imaging; Waste Biomass Valorization 9 (2018) 1451–1458. DOI: 10.1007/s12649-017-9890-4
- Dissanayake, A.Y., A. Priyadarshana, B. Jayawardhana, L. Chathurika, and N.D. Karunasinghe: Light Weight Solution for Stem and Leaf Classification in Tea Industry, Hybrid Color Space for Black Tea Classification; in: 2017 2nd International Conference on Multimedia and Image Processing (ICMIP), Wuhan, China (2017) 73–77. DOI: 10.1109/ICMIP.2017.67
- Wu, Y.H.: The Optoelectronic System of Electronic Colour Separator for Tea Stems. Trans. Chin. Soc. Agric. Mach. (1990) Issue 1, 90–95. DOI: CNKI:SUN:NYJX.0.1990-01-015
- Dong, Y., L. Xuan, M. Liang, F. Chao, C. Yan, and S. He: LED-Induced Fluorescence System for Tea Classification and Quality Assessment; J. Food Eng. 137 (2014) 95–100. DOI:10.1016/j.jfoodeng.2014.03.027
- de Boves Harrington, P.: Support Vector Machine Classification Trees Based on Fuzzy Entropy of Classification; Anal. Chim. Acta 954 (2017) 14–21. DOI:10.1016/j.aca.2016.11.072
- Gill, G.S., A. Kumar, and R. Agarwal: Nondestructive Grading of Black Tea Based on Physical Parameters by Texture Analysis; Biosyst. Eng. 116 (2013) 198–204. DOI: 10.1016/j.biosystemseng.2013.08.002
- Zhu, W.K., B. Liu, W.J. Mao, J.P. Xi, K.J. Zhong, H. Zhang, Y.B. Wang, G. Huang, and L.L. Chen: A Method for On-Line Detection of Stem in Strips Based on Low-Energy X-Ray Transmission Imaging; Tob. Sci. Technol. 48 (2015) 69–74. DOI:10.16135/j.issn1002-0861.20150214.
- Ahmed, M.R., J. Yasmin, W. Collins, and B.K. Cho: X-Ray CT Image Analysis for Morphology of Musk-melon Seed in Relation to Germination; Biosyst. Eng. 175 (2018) 183–193. DOI: 10.1016/j.biosystemseng.2018.09.015
- Donis-Gonzalez, I.R., D.E. Guyer, A. Pease, and F. Barthel: Internal Characterisation of Fresh Agricultural Products Using Traditional and Ultrafast Electron Beam X-Ray Computed Tomography Imaging; Biosyst. Eng. 117 (2014) 104–113. DOI: 10.1016/j.biosystemseng.2013.07.002
- Schatzki, T.F., R.P. Haff, R. Young, I. Can, L.C. Le, and N. Toyofuku: Defect Detection in Apples by Means of X-ray Imaging; in: Proc. SPIE 2907, Optics in Agriculture, Forestry, and Biological Processing II, (18 December 1996), USDA Agricultural Research Service (United States) 2907 (1996) 176–185. DOI: 10.1117/12.262857
- Yu, X., Y. Li, M. Ng, H. Yang, and S. Wang,: Comparative Study of Pyrethroids Residue in Fruit Peels and Fleshes Using Polystyrene-Coated Magnetic Nanoparticles Based Clean-Up Techniques; Food Control 85 (2018) 300–307. DOI: 10.1016/j.foodcont.2017.10.016
- Peng, J., J.Y. Yi, J.F. Bi, Q.Q. Chen, X.Y. Wu, M. Zhou, and J.N. Liu: Freezing as Pretreatment in Instant Controlled Pressure Drop (DIC) Texturing of Dried Carrot Chips: Impact of Freezing Temperature; LWT Food Sci. Technol. 89 (2018) 365–373. DOI: 10.1016/j.lwt.2017.11.009
- Yanniotis, S., A. Proshlyakov, A. Revithi, M. Georgiadou, and J. Blahovec: X-Ray Imaging for Fungal Necrotic Spot Detection in Pistachio Nuts; Procedia Food Sci. 1 (2011) 379–384. DOI: 10.1016/j.profoo.2011.09.058
- Neethirajan, S., D.S. Jayas, N.D.G. White, and H. Zhang: Investigation of 3D Geometry of Bulk Wheat and Pea Pores Using X-Ray Computed Tomography Images; Comput. Electron. Agric. 63 (2008) 104–111. DOI: 10.1016/j.compag.2008.01.019
- Font i Furnols, M., M.F. Teran, and M. Gispert: Estimation of Lean Meat Content in Pig Carcasses Using X-Ray Computed Tomography and PLS Regression. Chemom. Intell. Lab. Syst. 98 (2009) 31–37. DOI: 10.1016/j.chemolab.2009.04.009