References
- Baker, R.R.: Smoke Generation Inside a Burning Cigarette: Modifying Combustion to Develop Cigarettes That may be Less Hazardous to Health; Prog. Energy Combust. Sci. 32 (2006) 373–385. DOI: 10.1016/j.pecs.2006.01.001
- Health Canada: Tobacco Reporting Regulations; SOR/2000-273, Schedule 2 (2000). Available at: https://laws-lois.justice.gc.ca/eng/regulations/SOR-2000-273/index.html (accessed October 2022)
- World Health Organization (WHO): The Scientific Basis of Tobacco Product Regulation: Report of the WHO Study Group (TobReg); Technical Report Series 951, WHO, Geneva, Switzerland, 2008.
- U.S. Food and Drug Administration (FDA): Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke; Established List; Federal Register Food and Drug Administration 77 (2012) p. 20034.
- Torikai, K., S. Yoshida, and H. Takahashi: Effects of Temperature, Atmosphere and pH on the Generation of Smoke Compounds During Tobacco Pyrolysis; Food Chem. Toxicol. 42 (2004) 1409–1417. DOI: 10.1016/j.fct.2004.04.002
- R.J. Reynolds Tobacco Company: Chemical and Biological Studies on New Cigarette Prototypes That Heat Instead of Burn Tobacco; R.J. Reynolds Tobacco Co., Winston-Salem, NC 27102, USA, 1988.
- Stabbert, R., P. Voncken, K. Rustemeier, H.J. Haussmann, E. Roemer, H. Schaffernicht, and G. Patskan: Toxicological Evaluation of an Electrically Heated Cigarette. Part 2: Chemical Composition of Mainstream Smoke; J. Appl. Toxicol. 23 (2003) 329–339. DOI: 10.1002/jat.924
- Tewes, F.J., T.J. Meisgen, D.J. Veltel, E. Roemer, and G. Patskan: Toxicological Evaluation of an Electrically Heated Cigarette. Part 3: Genotoxicity and Cytotoxicity of Mainstream Smoke; J. Appl. Toxicol. 23 (2003) 341–348. DOI: 10.1002/jat.925
- Patskan, G. and W. Reininghaus: Toxicological Evaluation of an Electrically Heated Cigarette. Part 1: Overview of Technical Concepts and Summary of Findings; J. Appl. Toxicol. 23 (2003) 323–328. DOI: 10.1002/jat.923
- Schorp, M.K., A.R. Tricker, and R. Dempsey: Reduced Exposure Evaluation of an Electrically Heated Cigarette Smoking System. Part 1: Non-Clinical and Clinical Insights; Regul. Toxicol. Pharmacol. 64 (2012) S1–S10. DOI: 10.1016/j.yrtph.2012.08.008
- Wynder E.L., G. Wright, and J. Lam: A Study of Tobacco Carcinogenesis. V. The Role of Pyrolysis; Cancer 11 (1958) 1140–1148. DOI: 10.1002/1097-0142(195811/12)11:6<1140::AID-CNCR2820110609>3.0.CO;2-Z
- White, J.L., B.T Connor, T.A. Perfetti, B.R. Bombick, J.T. Avalos, K.T. Fowler, C.J. Smith, and D.J. Doolittle: The Effect of Pyrolysis Temperature on Mutagenicity of Tobacco Smoke Condensate; Food Chem. Toxicol. 39 (2001) 499–505. DOI: 10.1016/S0278-6915(00)00155-1
- Cozzani, V., T. Mc Grath, M. Smith, J.-P. Schaller, and G. Zuber: Absence of Combustion in an Electrically Heated Tobacco System - An Experimental Investigation; presented at the 21st International Symposium on Analytical and Applied Pyrolysis, Nancy, France. 9th–12th May 2016. Available at: https://www.pmiscience.com/content/dam/pmiscience/en/publications/presentations-and-posters/pdf/absence-of-combustion-in-an-electrically-heated-tobacco-system-an-experimental-investigation-(1).pdf
- Bentley, M.: What do we Know About the Chemistry of IQOS Aerosol?; Philip Morris International, PMI Science, 2020. Available at: https://www.pmiscience.com/Open-Science/september-open-science-presentations/bentley-chemistry-iqos-aerosol (accessed October 2022)
- Horinouchi, T. and S. Miwa: Comparison of Cytotoxi-city of Cigarette Smoke Extract Derived from Heat-Not-Burn and Combustion Cigarettes in Human Vascular Endothelial Cells; J. Pharmacol. Sci. 147 (2021) 223–233. DOI: 10.1016/j.jphs.2021.07.005.
- Eaton, D., B. Jakaj, M. Forster, J. Nicol, E. Mavropoulou, K. Scott, C. Liu, K. McAdam, J. Murphy, and C.J. Proctor: Assessment of Tobacco Heating Product THP1.0. Part 2: Product Design, Operation and Thermophysical Characterisation; Regul. Toxicol. Pharmacol. 93 (2018) 4–13. DOI: 10.1016/j.yrtph.2017.09.009
- Lee, J. and S. Lee: Korean-Made Heated Tobacco Product, ‘Lil’; Tob. Control 0 (2018) 1–2. DOI: 10.1136/tobaccocontrol-2018-054430
- Li, B., Y. Sun, L. Fu, L. Feng, P. Lei, C. Liu, J. Han, S. Shang, S. Wang, L. Wang, Y. Pan, Q. Zhang, Z. Guo, F. Huang, M. Zhang, J. Tang, B. Wang, and K. Zhang: Aerosol Formation and Transfer in Open- and not Open-Ended Heated Tobacco Products; Contrib. Tob. Nicotine Res. 31 (2022) 162–174. DOI: 10.2478/cttr-2022-0017
- Sun, T., C. Sun, Q. Song, Y. Li, X. Wang, and X. Shu: Strengthening the Results of Destroying the Caking Property of CBC in Weak Oxygen and Upgrading Pyrolysis Products; Fuel 205 (2017) 90–99. DOI: 10.1016/j.fuel.2017.05.040
- Rashid Khan, M., R. Usmen, E. Newton, S. Beer, and W. Chisholm: E.S.R. Spectroscopic Study on the Chemistry of Coal Oxidation; Fuel 67 (1988) 1668–1673. DOI: 10.1016/0016-2361(88)90213-X
- Busch, C., T. Streibel, C. Liu, K.G. McAdam, and R. Zimmermann: Pyrolysis and Combustion of Tobacco in a Cigarette Smoking Simulator Under Air and Nitrogen Atmosphere; Anal. Bioanal. Chem 403 (2012) 419–430. DOI: 10.1007/s00216-012-5879-9
- Senneca, O., S. Ciaravolo, and A. Nunziata: Composition of the Gaseous Products of Pyrolysis of Tobacco Under Inert and Oxidative Conditions; J. Anal. Appl. Pyrolysis 79 (2007) 234–243. DOI: 10.1016/j.jaap.2006.09.011
- Alderman, S.L., C. Song, S.C. Moldoveanu, and S.K. Cole: Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency; Beitr. Tabakforsch. Int. 26 (2014) 183–190. DOI: 10.1515/cttr-2015-0006
- Hofer, I., L. Gautier, E. Cortes Sauteur, M. Dobler, A. Python, C. O’Reilly, D. Gisi, Daniel, E. Tinguely, L. Wehren, and E. García Fidalgo: A Screening Method by Gas Chromatography-Mass Spectrometry for the Quantification of 24 Aerosol Constituents From Heat-Not-Burn Tobacco Products; Beitr. Tabakforsch. Int. 28 (2019) 317–328. DOI: 10.2478/cttr-2019-0013
- Herbinet, O. and F. Battin-Leclerc: Progress in Understanding Low-Temperature Organic Compound Oxidation Using a Jet-Stirred Reactor; Int. J. Chem. Kinet. 46 (2014) 619–639. DOI: 10.1002/kin.20871
- Herbinet, O., B. Husson, M. Ferrari, P.A. Glaude, and F. Battin-Leclerc: Low Temperature Oxidation of Benzene and Toluene in Mixture With n-Decane; Proc. Combust. Inst. 34 (2013) 297–305. DOI: 10.1016/j.proci.2012.06.005
- Bounaceur, R., I. Da Costa, R. Fournet, F. Billaud, and F. Battin-Leclerc: Experimental and Modeling Study of the Oxidation of Toluene; Int. J. Chem. Kinet. 37 (2005) 25–49. DOI: 10.1002/kin.20047
- Zhao, S., Y. Luo, Y. Su, Y. Zhang, and Y. Long: Experimental Investigation of the Oxidative Pyrolysis Mechanism of Pinewood on a Fixed-Bed Reactor; Energy Fuels 28 (2014) 5049–5056. DOI: 10.1021/ef500612q
- Roubaud, A., O. Lemaire, A. Minetti, and L.R. Sochet: High Pressure Auto-Ignition and Oxidation Mechanisms of o-Xylene, o-Ethyltoluene, and n-Butylbenzene Between 600 and 900 K; Combust. Flame 123 (2000) 561–571. DOI: 10.1016/S0010-2180(00)00174-7
- Li, D., F. Berruti, and C. Briens: Autothermal Fast Pyrolysis of Birch Bark with Partial Oxidation in a Fluidized Bed Reactor; Fuel 121 (2014) 27–38. DOI: 10.1016/j.fuel.2013.12.042
- Yi, S., Y. Luo, C. Yi, W. Wu, and Y. Zhang: Experimental and Numerical Investigation of Tar Destruction Under Partial Oxidation Environment; Fuel Process. Technol. 92 (2011) 1513–1524. DOI: 10.1016/j.fuproc.2011.03.013
- Zhang, Y., S. Kajitani, M. Ashizawa, and Y. Oki: Tar Destruction and Coke Formation During Rapid Pyrolysis and Gasification of Biomass in a Drop-Tube Furnace; Fuel 89 (2010) 302–309. DOI: 10.1016/j.fuel.2009.08.045
- Ogunlaja, A.S., M.S. Abdul-Quadir, P.E. Kleyi, E.E. Ferg, P. Watts, and Z.R. Tshentu: Towards Oxidative Denitrogenation of Fuel Oils: Vanadium Oxide-Catalysed Oxidation of Quinoline and Adsorptive Removal of Quinoline-N-oxide using 2,6-Pyridine-polybenzimidazole Nanofibers; Arab. J. Chem. 12 (2019) 198–214. DOI: 10.1016/j.arabjc.2017.05.010
- Cetin, E., B. Moghtaderi, R. Gupta, and T.F. Wall: Influence of Pyrolysis Conditions on the Structure and Gasification Reactivity of Biomass Chars; Fuel 83 (2004) 2139–2150. DOI: 10.1016/j.fuel.2004.05.008
- Lu, L., V. Sahajwalla, C. Kong, and D. Harris: Quantitative X-Ray Diffraction Analysis and its Application to Various Coals; Carbon 39 (2001) 1821–1833. DOI: 10.1016/S0008-6223(00)00318-3
- Schoening, F.R.L.: X-Ray Structure of Some South African Coals Before and After Heat Treatment at 500 and 1000 °C; Fuel 62 (1983) 1315–20. DOI: 10.1016/S0016-2361(83)80016-7
- Liu, R.: Research on Biomass Oxidative Torrefaction and Combustion Properties; PhD Thesis, Huazhong University of Science and Technology, Wuhan, China, 2014.
- Yan, J., Z. Lei, Z. Li, Z. Wang, S. Ren, S. Kang, X. Wang, and H. Shui: Molecular Structure Characterization of Low-Medium Rank Coals via XRD, Solid State 13C NMR and FTIR Spectroscopy; Fuel 268 (2020) 117038. DOI: 10.1016/j.fuel.2020.117038
- Wang, S., L. Wu, X. Hu, L. Zhang, K.M. O’Donnell, C.E. Buckley, and C. Li: An X-Ray Photoelectron Spectroscopic Perspective for the Evolution of O-Containing Structures in Char During Gasification; Fuel Process. Technol. 172 (2018) 209–215. DOI: 10.1016/j.fuproc.2017.12.019.
- Perry, D.L. and A. Grint: Application of XPS to Coal Characterization, Fuel 62 (1983) 1024–1033. DOI: 10.1016/0016-2361(83)90135-7
- Gardner, S.D., C.S.K. Singamsetty, G.L. Booth, G.-R. He, and C.U. Pittman: Surface Characterization of Carbon Fibers Using Angle-Resolved XPS and ISS; Carbon 33 (1995) 587–595. DOI: 10.1016/0008-6223(94)00144-O
- Cerciello, F., O. Senneca, A. Coppola, A. Forgione, P. Lacovig, and P. Salatino: The Influence of Temperature on the Nature and Stability of Surface-Oxides Formed by Oxidation of Char; Renew. Sustain. Energy Rev. 137 (2021) 110595. DOI: 10.1016/j.rser.2020.110595
- Liang, J.Y., T.T. Qu, K. Xiang, Y. Zhang, S.Y. Chen, Y.C. Cao, M.J. Xie, and X.F. Guo: Microwave Assisted Synthesis of Camellia Oleifera Shell-Derived Porous Carbon with Rich Oxygen Functionalities and Superior Supercapacitor Performance; Appl. Surf. Sci. 436 (2018) 934–940. DOI: 10.1016/j.apsusc.2017.12.142