Have a personal or library account? Click to login
Thermal De-Oxygenation to Form Condensable Aerosol From Reconstituted Tobacco without Auto-Ignition Cover

Thermal De-Oxygenation to Form Condensable Aerosol From Reconstituted Tobacco without Auto-Ignition

Open Access
|Dec 2022

References

  1. Baker, R.R.: Smoke Generation Inside a Burning Cigarette: Modifying Combustion to Develop Cigarettes That may be Less Hazardous to Health; Prog. Energy Combust. Sci. 32 (2006) 373–385. DOI: 10.1016/j.pecs.2006.01.001
  2. Health Canada: Tobacco Reporting Regulations; SOR/2000-273, Schedule 2 (2000). Available at: https://laws-lois.justice.gc.ca/eng/regulations/SOR-2000-273/index.html (accessed October 2022)
  3. World Health Organization (WHO): The Scientific Basis of Tobacco Product Regulation: Report of the WHO Study Group (TobReg); Technical Report Series 951, WHO, Geneva, Switzerland, 2008.
  4. U.S. Food and Drug Administration (FDA): Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke; Established List; Federal Register Food and Drug Administration 77 (2012) p. 20034.
  5. Torikai, K., S. Yoshida, and H. Takahashi: Effects of Temperature, Atmosphere and pH on the Generation of Smoke Compounds During Tobacco Pyrolysis; Food Chem. Toxicol. 42 (2004) 1409–1417. DOI: 10.1016/j.fct.2004.04.002
  6. R.J. Reynolds Tobacco Company: Chemical and Biological Studies on New Cigarette Prototypes That Heat Instead of Burn Tobacco; R.J. Reynolds Tobacco Co., Winston-Salem, NC 27102, USA, 1988.
  7. Stabbert, R., P. Voncken, K. Rustemeier, H.J. Haussmann, E. Roemer, H. Schaffernicht, and G. Patskan: Toxicological Evaluation of an Electrically Heated Cigarette. Part 2: Chemical Composition of Mainstream Smoke; J. Appl. Toxicol. 23 (2003) 329–339. DOI: 10.1002/jat.924
  8. Tewes, F.J., T.J. Meisgen, D.J. Veltel, E. Roemer, and G. Patskan: Toxicological Evaluation of an Electrically Heated Cigarette. Part 3: Genotoxicity and Cytotoxicity of Mainstream Smoke; J. Appl. Toxicol. 23 (2003) 341–348. DOI: 10.1002/jat.925
  9. Patskan, G. and W. Reininghaus: Toxicological Evaluation of an Electrically Heated Cigarette. Part 1: Overview of Technical Concepts and Summary of Findings; J. Appl. Toxicol. 23 (2003) 323–328. DOI: 10.1002/jat.923
  10. Schorp, M.K., A.R. Tricker, and R. Dempsey: Reduced Exposure Evaluation of an Electrically Heated Cigarette Smoking System. Part 1: Non-Clinical and Clinical Insights; Regul. Toxicol. Pharmacol. 64 (2012) S1–S10. DOI: 10.1016/j.yrtph.2012.08.008
  11. Wynder E.L., G. Wright, and J. Lam: A Study of Tobacco Carcinogenesis. V. The Role of Pyrolysis; Cancer 11 (1958) 1140–1148. DOI: 10.1002/1097-0142(195811/12)11:6<1140::AID-CNCR2820110609>3.0.CO;2-Z
  12. White, J.L., B.T Connor, T.A. Perfetti, B.R. Bombick, J.T. Avalos, K.T. Fowler, C.J. Smith, and D.J. Doolittle: The Effect of Pyrolysis Temperature on Mutagenicity of Tobacco Smoke Condensate; Food Chem. Toxicol. 39 (2001) 499–505. DOI: 10.1016/S0278-6915(00)00155-1
  13. Cozzani, V., T. Mc Grath, M. Smith, J.-P. Schaller, and G. Zuber: Absence of Combustion in an Electrically Heated Tobacco System - An Experimental Investigation; presented at the 21st International Symposium on Analytical and Applied Pyrolysis, Nancy, France. 9th–12th May 2016. Available at: https://www.pmiscience.com/content/dam/pmiscience/en/publications/presentations-and-posters/pdf/absence-of-combustion-in-an-electrically-heated-tobacco-system-an-experimental-investigation-(1).pdf
  14. Bentley, M.: What do we Know About the Chemistry of IQOS Aerosol?; Philip Morris International, PMI Science, 2020. Available at: https://www.pmiscience.com/Open-Science/september-open-science-presentations/bentley-chemistry-iqos-aerosol (accessed October 2022)
  15. Horinouchi, T. and S. Miwa: Comparison of Cytotoxi-city of Cigarette Smoke Extract Derived from Heat-Not-Burn and Combustion Cigarettes in Human Vascular Endothelial Cells; J. Pharmacol. Sci. 147 (2021) 223–233. DOI: 10.1016/j.jphs.2021.07.005.
  16. Eaton, D., B. Jakaj, M. Forster, J. Nicol, E. Mavropoulou, K. Scott, C. Liu, K. McAdam, J. Murphy, and C.J. Proctor: Assessment of Tobacco Heating Product THP1.0. Part 2: Product Design, Operation and Thermophysical Characterisation; Regul. Toxicol. Pharmacol. 93 (2018) 4–13. DOI: 10.1016/j.yrtph.2017.09.009
  17. Lee, J. and S. Lee: Korean-Made Heated Tobacco Product, ‘Lil’; Tob. Control 0 (2018) 1–2. DOI: 10.1136/tobaccocontrol-2018-054430
  18. Li, B., Y. Sun, L. Fu, L. Feng, P. Lei, C. Liu, J. Han, S. Shang, S. Wang, L. Wang, Y. Pan, Q. Zhang, Z. Guo, F. Huang, M. Zhang, J. Tang, B. Wang, and K. Zhang: Aerosol Formation and Transfer in Open- and not Open-Ended Heated Tobacco Products; Contrib. Tob. Nicotine Res. 31 (2022) 162–174. DOI: 10.2478/cttr-2022-0017
  19. Sun, T., C. Sun, Q. Song, Y. Li, X. Wang, and X. Shu: Strengthening the Results of Destroying the Caking Property of CBC in Weak Oxygen and Upgrading Pyrolysis Products; Fuel 205 (2017) 90–99. DOI: 10.1016/j.fuel.2017.05.040
  20. Rashid Khan, M., R. Usmen, E. Newton, S. Beer, and W. Chisholm: E.S.R. Spectroscopic Study on the Chemistry of Coal Oxidation; Fuel 67 (1988) 1668–1673. DOI: 10.1016/0016-2361(88)90213-X
  21. Busch, C., T. Streibel, C. Liu, K.G. McAdam, and R. Zimmermann: Pyrolysis and Combustion of Tobacco in a Cigarette Smoking Simulator Under Air and Nitrogen Atmosphere; Anal. Bioanal. Chem 403 (2012) 419–430. DOI: 10.1007/s00216-012-5879-9
  22. Senneca, O., S. Ciaravolo, and A. Nunziata: Composition of the Gaseous Products of Pyrolysis of Tobacco Under Inert and Oxidative Conditions; J. Anal. Appl. Pyrolysis 79 (2007) 234–243. DOI: 10.1016/j.jaap.2006.09.011
  23. Alderman, S.L., C. Song, S.C. Moldoveanu, and S.K. Cole: Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency; Beitr. Tabakforsch. Int. 26 (2014) 183–190. DOI: 10.1515/cttr-2015-0006
  24. Hofer, I., L. Gautier, E. Cortes Sauteur, M. Dobler, A. Python, C. O’Reilly, D. Gisi, Daniel, E. Tinguely, L. Wehren, and E. García Fidalgo: A Screening Method by Gas Chromatography-Mass Spectrometry for the Quantification of 24 Aerosol Constituents From Heat-Not-Burn Tobacco Products; Beitr. Tabakforsch. Int. 28 (2019) 317–328. DOI: 10.2478/cttr-2019-0013
  25. Herbinet, O. and F. Battin-Leclerc: Progress in Understanding Low-Temperature Organic Compound Oxidation Using a Jet-Stirred Reactor; Int. J. Chem. Kinet. 46 (2014) 619–639. DOI: 10.1002/kin.20871
  26. Herbinet, O., B. Husson, M. Ferrari, P.A. Glaude, and F. Battin-Leclerc: Low Temperature Oxidation of Benzene and Toluene in Mixture With n-Decane; Proc. Combust. Inst. 34 (2013) 297–305. DOI: 10.1016/j.proci.2012.06.005
  27. Bounaceur, R., I. Da Costa, R. Fournet, F. Billaud, and F. Battin-Leclerc: Experimental and Modeling Study of the Oxidation of Toluene; Int. J. Chem. Kinet. 37 (2005) 25–49. DOI: 10.1002/kin.20047
  28. Zhao, S., Y. Luo, Y. Su, Y. Zhang, and Y. Long: Experimental Investigation of the Oxidative Pyrolysis Mechanism of Pinewood on a Fixed-Bed Reactor; Energy Fuels 28 (2014) 5049–5056. DOI: 10.1021/ef500612q
  29. Roubaud, A., O. Lemaire, A. Minetti, and L.R. Sochet: High Pressure Auto-Ignition and Oxidation Mechanisms of o-Xylene, o-Ethyltoluene, and n-Butylbenzene Between 600 and 900 K; Combust. Flame 123 (2000) 561–571. DOI: 10.1016/S0010-2180(00)00174-7
  30. Li, D., F. Berruti, and C. Briens: Autothermal Fast Pyrolysis of Birch Bark with Partial Oxidation in a Fluidized Bed Reactor; Fuel 121 (2014) 27–38. DOI: 10.1016/j.fuel.2013.12.042
  31. Yi, S., Y. Luo, C. Yi, W. Wu, and Y. Zhang: Experimental and Numerical Investigation of Tar Destruction Under Partial Oxidation Environment; Fuel Process. Technol. 92 (2011) 1513–1524. DOI: 10.1016/j.fuproc.2011.03.013
  32. Zhang, Y., S. Kajitani, M. Ashizawa, and Y. Oki: Tar Destruction and Coke Formation During Rapid Pyrolysis and Gasification of Biomass in a Drop-Tube Furnace; Fuel 89 (2010) 302–309. DOI: 10.1016/j.fuel.2009.08.045
  33. Ogunlaja, A.S., M.S. Abdul-Quadir, P.E. Kleyi, E.E. Ferg, P. Watts, and Z.R. Tshentu: Towards Oxidative Denitrogenation of Fuel Oils: Vanadium Oxide-Catalysed Oxidation of Quinoline and Adsorptive Removal of Quinoline-N-oxide using 2,6-Pyridine-polybenzimidazole Nanofibers; Arab. J. Chem. 12 (2019) 198–214. DOI: 10.1016/j.arabjc.2017.05.010
  34. Cetin, E., B. Moghtaderi, R. Gupta, and T.F. Wall: Influence of Pyrolysis Conditions on the Structure and Gasification Reactivity of Biomass Chars; Fuel 83 (2004) 2139–2150. DOI: 10.1016/j.fuel.2004.05.008
  35. Lu, L., V. Sahajwalla, C. Kong, and D. Harris: Quantitative X-Ray Diffraction Analysis and its Application to Various Coals; Carbon 39 (2001) 1821–1833. DOI: 10.1016/S0008-6223(00)00318-3
  36. Schoening, F.R.L.: X-Ray Structure of Some South African Coals Before and After Heat Treatment at 500 and 1000 °C; Fuel 62 (1983) 1315–20. DOI: 10.1016/S0016-2361(83)80016-7
  37. Liu, R.: Research on Biomass Oxidative Torrefaction and Combustion Properties; PhD Thesis, Huazhong University of Science and Technology, Wuhan, China, 2014.
  38. Yan, J., Z. Lei, Z. Li, Z. Wang, S. Ren, S. Kang, X. Wang, and H. Shui: Molecular Structure Characterization of Low-Medium Rank Coals via XRD, Solid State 13C NMR and FTIR Spectroscopy; Fuel 268 (2020) 117038. DOI: 10.1016/j.fuel.2020.117038
  39. Wang, S., L. Wu, X. Hu, L. Zhang, K.M. O’Donnell, C.E. Buckley, and C. Li: An X-Ray Photoelectron Spectroscopic Perspective for the Evolution of O-Containing Structures in Char During Gasification; Fuel Process. Technol. 172 (2018) 209–215. DOI: 10.1016/j.fuproc.2017.12.019.
  40. Perry, D.L. and A. Grint: Application of XPS to Coal Characterization, Fuel 62 (1983) 1024–1033. DOI: 10.1016/0016-2361(83)90135-7
  41. Gardner, S.D., C.S.K. Singamsetty, G.L. Booth, G.-R. He, and C.U. Pittman: Surface Characterization of Carbon Fibers Using Angle-Resolved XPS and ISS; Carbon 33 (1995) 587–595. DOI: 10.1016/0008-6223(94)00144-O
  42. Cerciello, F., O. Senneca, A. Coppola, A. Forgione, P. Lacovig, and P. Salatino: The Influence of Temperature on the Nature and Stability of Surface-Oxides Formed by Oxidation of Char; Renew. Sustain. Energy Rev. 137 (2021) 110595. DOI: 10.1016/j.rser.2020.110595
  43. Liang, J.Y., T.T. Qu, K. Xiang, Y. Zhang, S.Y. Chen, Y.C. Cao, M.J. Xie, and X.F. Guo: Microwave Assisted Synthesis of Camellia Oleifera Shell-Derived Porous Carbon with Rich Oxygen Functionalities and Superior Supercapacitor Performance; Appl. Surf. Sci. 436 (2018) 934–940. DOI: 10.1016/j.apsusc.2017.12.142
Language: English
Page range: 130 - 141
Submitted on: Jan 24, 2022
Accepted on: Jun 30, 2022
Published on: Dec 10, 2022
Published by: Institut für Tabakforschung GmbH
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Zhongya Guo, Shiyu Wang, Ke Zhang, Ping Lei, Lili Fu, Qi Zhang, Shanzhai Shang, Shuang Wang, Le Wang, Mingjian Zhang, Weimin Gong, Jingmei Han, Zhiqiang Li, Yonghua Pan, Feng Huang, Chuan Liu, Jianguo Tang, Bing Wang, Bin Li, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.