Have a personal or library account? Click to login
Analysis of Pyrolysis Characteristics and Kinetics of Cigar Tobacco and Flue-Cured Tobacco by TG-FTIR Cover

Analysis of Pyrolysis Characteristics and Kinetics of Cigar Tobacco and Flue-Cured Tobacco by TG-FTIR

Open Access
|Apr 2021

References

  1. Statista Website: Statista Consumer Market Outlook - Segment Report: Tobacco Products Report 2020 - Cigars; available at: https://www.statista.com/study/50788/tobacco-products-report-cigars/ (accessed February 2021).
  2. Persoskie, A., E.K. O’Brien, E.A. Donaldson, J. Pearson, K. Choi, A. Kaufman, C.A. Stanton, and C.D. Delnevo: Cigar Package Quantity and Smoking Behavior; BMC Public Health 19 (2019) 868–877. DOI: 10.1186/s12889-019-7205-3
  3. Senneca, O., R. Chirone, P. Salatino, and L. Nappi: Patterns and Kinetics of Pyrolysis of Tobacco Under Inert and Oxidative Conditions; J. Anal. Appl. Pyrolysis 79 (2006) 227–233. DOI: 10.1016/j.jaap.2006.12.011
  4. Piotrowska-Cyplik, A., A. Olejnik, P. Cyplik, J. Dach, and Z. Czarnecki: The Kinetics of Nicotine Degradation, Enzyme Activities and Genotoxic Potential in the Characterization of Tobacco Waste Composting; Bioresour. Technol. 100 (2009) 5037–5044. DOI: 10.1016/j.biortech.2009.05.053
  5. Cardoso, C.R. and C.H. Ataíde: Analytical Pyrolysis of Tobacco Residue: Effect of Temperature and Inorganic Additives; J. Anal. Appl. Pyrolysis 99 (2013) 49–57. DOI: 10.1016/j.jaap.2012.10.029
  6. Gao, W., K. Chen, Z. Xiang, F. Yang, J. Zeng, J. Li, R. Yang, G. Rao, and H. Tao: Kinetic Study on Pyrolysis of Tobacco Residues From the Cigarette Industry; Ind. Crops Prod. 44 (2013) 152–157. DOI: 10.1016/j.indcrop.2012.10.032
  7. Libra, J.A., K.S. Ro, C. Kammann, A. Funke, N.D. Berge, Y. Neubauer, M.-M. Titirici, C. Fühner, O. Bens, J. Kern, and K.-H. Emmerich: Hydrothermal Carbonization of Biomass Residuals: A Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis; Biofuels 2 (2011) 71–106. DOI: 10.4155/bfs.10.81
  8. Islam, M.A., M. Asif, and B.H. Hameed: Pyrolysis Kinetics of Raw and Hydrothermally Carbonized Karanj (Pongamia pinnata) Fruit Hulls Via Thermogravimetric Analysis; Bioresour. Technol. 179 (2015) 227–233. DOI: 10.1016/j.biortech.2014.11.115
  9. Pandey, K.K. and A.J. Pitman: FTIR Studies of the Changes in Wood Chemistry Following Decay by Brown-Rot and White-Rot Fungi; Int. Biodeterior. Biodegrad. 52 (2003) 151–160. DOI: 10.1016/S0964-8305(03)00052-0
  10. Cardoso, C.R., M.R. Miranda, K.G. Santos, and C.H. Ataíde: Determination of Kinetic Parameters and Analytical Pyrolysis of Tobacco Waste and Sorghum Bagasse; J. Anal. Appl. Pyrolysis 92 (2011) 392–400. DOI: 10.1016/j.jaap.2011.07.013
  11. Guo, G., C. Liu, Y. Wang, S. Xie, K. Zhang, L. Chen, W. Zhu, and M. Ding: Comparative Investigation on Thermal Degradation of Flue-Cured Tobacco with Different Particle Sizes by a Macro-Thermogravimetric Analyzer and Their Apparent Kinetics Based on Distributed Activation Energy Model; J. Therm. Anal. Calorim. 138 (2019) 3375–3388. DOI: 10.1007/s10973-019-08215-7
  12. Wang, X., Z. Wang, Y. Dai, K. Ma, L. Zhu, and H. Tan: Thermogravimetric Study on the Flue-Cured Tobacco Leaf Pyrolysis and Combustion Using a Distributed Activation Energy Model; Asia-Pac. J. Chem. Eng. 12 (2017) 75–84. DOI: 10.1002/apj.2055
  13. Valverde, J.L., C. Curbelo, O. Mayo, and C.B. Molina: Pyrolysis Kinetics of Tobacco Dust; Chem. Eng. Res. Des. 78 (2000) 921–924. DOI: 10.1205/026387600527996
  14. Ahamad, T. and S.M. Alshehri: TG-FTIR-MS (Evolved Gas Analysis) of Bidi Tobacco Powder During Combustion and Pyrolysis; J. Hazard. Mater. 199–200 (2012) 200–208. DOI: 10.1016/j.jhazmat.2011.10.090
  15. Garcia, R., C. Pizarro, A.G. Lavin, and J.L. Bueno: Biomass Proximate Analysis Using Thermogravimety; Bioresour. Technol. 139 (2013) 1–4. DOI: 10.1016/j.biortech.2013.03.197
  16. Li, S., S. Xu, S. Liu, Y. Chen, and Q. Lu: Fast Pyrolysis of Biomass in Free-Fall Reactor for Hydrogen-Rich Gas; Fuel Process. Technol. 85 (2004) 1201–1211. DOI: 10.1016/j.fuproc.2003.11.043
  17. International Organization for Standardization (ISO): International Standard ISO 10315:2000. Cigarettes – Determination of Nicotine in Smoke Condensates – Gas-Chromatographic Method; ISO, Geneva, Switzerland, 2000. Available at: https://www.iso.org/standard/28320.html (accessed February 2021).
  18. Wang, C., F. Wang, Q. Yang, and R. Liang: Thermogravimetric Studies of the Behavior of Wheat Straw with Added Coal During Combustion; Biomass Bioenergy 33 (2009) 50–56. DOI: 10.1016/j.biombioe.2008.04.013
  19. Qian, W., Q. Xie, Y. Huang, J. Dang, K. Sun, Q. Yang, and J. Wang: Combustion Characteristics of Semicokes Derived From Pyrolysis of Low Rank Bituminous Coal; Int. J. Min. Sci. Technol. 22 (2012) 645–650. DOI: 10.1016/j.ijmst.2012.08.009
  20. Chen, X., L. Liu, L. Zhang, Y. Zhao, and P. Qiu: Pyrolysis Characteristics and Kinetics of Coal-Biomass Blends During Co-Pyrolysis; Energy Fuels 33 (2019) 1267–1268. DOI: 10.1021/acs.energyfuels.8b03987
  21. Dowdy, D.R.: Meaningful Activation Energies for Complex Systems. Part I; J. Therm. Anal. 32 (1987) 137–147. DOI: 10.1007/BF01914556
  22. Doyle, C.D.: Kinetic Analysis of Thermogravimetric Data; J. Appl. Polym. Sci. 5 (1961) 285–292. DOI: 10.1002/app.1961.070051506; DOI: 10.1002/app.1962.070061914 (Erratum)
  23. Kissinger, E. H.: Reaction Kinetics in Differential Thermal Analysis; Anal. Chem. 29 (1957) 1702–1706. DOI: 10.1021/ac60131a045
  24. Málek, J. and V. Smrčka: The Kinetic Analysis of the Crystallization Processes in Glasses; Thermochim. Acta 186 (1991) 153–169. DOI: 10.1016/0040-6031(91)87032-R
  25. Málek, J.: A Computer Program for Kinetic Analysis of Non-Isothermal Thermoanalytical Data; Thermochim. Acta 138 (1989) 337–346. DOI: 10.1016/0040-6031(89)87270-3
  26. Coats, A.W. and J.P. Redfern: Kinetic Parameters from Thermogravimetric Data; Nature 201 (1964) 68–69. DOI: 10.1038/201068a0
  27. Leffingwell, J.C.: Chemical Constituents of Tobacco Leaf and Differences Among Tobacco Types;Science Direct Working Paper No S1574-0331(04)70433-6, available at SSRN: https://ssrn.com/abstract=2969476 (2001) (accessed February 2021).
  28. Gao, W., K. Chen, Z. Xiang, F. Yang, J. Zeng, J. Li, R. Yang, G. Rao, and H. Tao: Kinetic Study on Pyrolysis of Tobacco Residues From the Cigarette Industry; Ind. Crops Prod. 44 (2013) 152–157. DOI: 10.1016/j.indcrop.2012.10.032
  29. Calabuig, E., N. Juárez-Serrano, and A. Marcilla: TG-FTIR Study of Evolved Gas in the Decomposition of Different Types of Tobacco. Effect of the Addition of SBA-15; Thermochim. Acta 671 (2019) 209–219. DOI: 10.1016/j.tca.2018.12.006
  30. Oja, V., M.R. Hajaligol, and B.E. Waymack: The Vaporization of Semi-Volatile Compounds During Tobacco Pyrolysis; J. Anal. Appl. Pyrolysis 76 (2005) 117–123. DOI: 10.1016/j.jaap.2005.08.005
  31. Barontini, F., A. Tugnoli, V. Cozzani, J. Tetteh, M. Jarriault, and I. Zinovik: Volatile Products Formed in the Thermal Decomposition of a Tobacco Substrate; Ind. Eng. Chem. Res. 52 (2013) 14984–14997. DOI: 10.1021/ie401826u
  32. Sonobe, T. and N. Worasuwannarak: Kinetic Analyses of Biomass Pyrolysis Using the Distributed Activation Energy Model; Fuel 87 (2008) 414–421. DOI: 10.1016/j.fuel.2007.05.004
  33. Yang, H., R. Yan, H. Chen, D.H. Lee, and C. Zheng: Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis; Fuel 86 (2007) 1781–1788. DOI: 10.1016/j.fuel.2006.12.013
  34. Barneto, A.G., J.A. Carmona, J.E.M. Alfonso, and R.S. Serrano: Simulation of the Thermogravimetry Analysis of Three Non-Wood Pulps; Bioresour. Technol. 101 (2010) 3220–3229. DOI: 10.1016/j.biortech.2009.12.034
  35. Wang, G., W. Li, B. Li, and H. Chen: TG Study on Pyrolysis of Biomass and its Three Components Under Syngas; Fuel 87 (2008) 552–558. DOI: 10.1016/j.fuel.2007.02.032
  36. Sung, Y.J. and Y.B. Seo: Thermogravimetric Study on Stem Biomass of Nicotiana tabacum; Thermochim. Acta 486 (2009) 1–4. DOI: 10.1016/j.tca.2008.12.010
  37. Ma, Z., J. Wang, Y. Yang, Y. Zhang, C. Zhao, Y. Yu, and S. Wang: Comparison of the Thermal Degradation Behaviors and Kinetics of Palm Oil Waste Under Nitrogen and Air Atmosphere in TGA-FTIR with a Complementary Use of Model-Free and Model-Fitting Approaches; J. Anal. Appl. Pyrolysis 134 (2018) 12–24. DOI: 10.1016/j.jaap.2018.04.002
  38. Jeguirim, M. and G. Trouvé: Pyrolysis Characteristics and Kinetics of Arundo donax Using Thermogravimetric Analysis; Bioresour. Technol. 100 (2009) 4026–4031. DOI: 10.1016/j.biortech.2009.03.033
  39. Özsin, G. and A.E. Pütün: Kinetics and Evolved Gas Analysis for Pyrolysis of Food Processing Wastes Using TGA/MS/FT-IR; Waste Manag. 64 (2017) 315–326. DOI: 10.1016/j.wasman.2017.03.020
  40. Shen, D.K., S. Gu, and A.V. Bridgwater: Study on the Pyrolytic Behaviour of Xylan-Based Hemicellulose Using TG-FTIR and Py-GC-FTIR; J. Anal. Appl. Pyrolysis 87 (2010) 199–206. DOI: 10.1016/j.jaap.2009.12.001
  41. Chen, Z., E. Leng, Y. Zhang, A. Zheng, Y. Peng, X. Gong, Y. Huang, and Y. Qiao: Pyrolysis Characteristics of Tobacco Stem After Different Solvent Leaching Treatments; J. Anal. Appl. Pyrolysis 130 (2018) 350–357. DOI: 10.1016/j.jaap.2017.12.009
  42. Gómez-Siurana, A., A. Marcilla, M. Beltrán, D. Berenguer, I. Martínez-Castellanos, and S. Menargues: TGA/FTIR Study of Tobacco and Glycerol-Tobacco Mixtures; Thermochim. Acta 573 (2013) 146–157. DOI: 10.1016/j.tca.2013.09.007
  43. Sharma, R.K., J.B. Wooten, V.L. Baliga, P.A. Martoglio-Smith, and M.R. Hajaligol: Characterization of Char from the Pyrolysis of Tobacco; J. Agric. Food Chem. 50 (2002) 771–783. DOI: 10.1021/jf0107398
  44. Liang, F., R. Wang, X. Hongzhong, X. Yang, T. Zhang, W. Hu, B. Mi, and Z. Liu: Investigating Pyrolysis Characteristics of Moso Bamboo Through TG-FTIR and Py-GC/MS; Bioresour. Technol. 256 (2018) 53–60. DOI: 10.1016/j.biortech.2018.01.140
  45. Zhou, S., Y. Xu, C. Wang, and Z. Tian: Pyrolysis Behavior of Pectin Under the Conditions That Simulate Cigarette Smoking; J. Anal. Appl. Pyrolysis 91 (2011) 232–240. DOI: 10.1016/j.jaap.2011.02.015
  46. Baker, R.R.: The Formation of the Oxides of Carbon by the Pyrolysis of Tobacco; Beitr. Tabakforsch. 8 (1975) 16–27. DOI: 10.2478/cttr-2013-0350
  47. Lopez-Velazquez, M.A., V. Santes, J. Balmaseda, and E. Torres-Garcia: Pyrolysis of Orange Waste: A Thermo-Kinetic Study; J. Anal. Appl. Pyrolysis 99 (2013) 170–177. DOI: 10.1016/j.jaap.2012.09.016
  48. Butterman, H.C. and M.J. Castaldi: Biomass to Fuels: Impact of Reaction Medium and Heating Rate; Environ. Eng. Sci. 27 (2010) 539–555. DOI: 10.1089/ees.2009.0372
Language: English
Page range: 29 - 43
Submitted on: Aug 17, 2020
|
Accepted on: Feb 17, 2021
|
Published on: Apr 20, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Anran Wang, Bin Cai, Lili Fu, Miao Liang, Xiangdong Shi, Bing Wang, Nan Deng, Bin Li, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.