Have a personal or library account? Click to login
Analysis of Pyrolysis Characteristics and Kinetics of Cigar Tobacco and Flue-Cured Tobacco by TG-FTIR Cover

Analysis of Pyrolysis Characteristics and Kinetics of Cigar Tobacco and Flue-Cured Tobacco by TG-FTIR

Open Access
|Apr 2021

Figures & Tables

Figure 1

TG (a) and DTG (b) curves of CFT, CWT and FCT pyrolysis processes at the heating rate of 10 °C min−1.
TG (a) and DTG (b) curves of CFT, CWT and FCT pyrolysis processes at the heating rate of 10 °C min−1.

Figure 2

TG-DTG curves of CFT (a), CWT (b) and FCT (c) pyrolysis processes under different heating rates of 5 °C min−1, 10 °C min−1, 15 °C min−1, and 20 °C min−1.
TG-DTG curves of CFT (a), CWT (b) and FCT (c) pyrolysis processes under different heating rates of 5 °C min−1, 10 °C min−1, 15 °C min−1, and 20 °C min−1.

Figure 3

3D TG/FTIR diagram of pyrolysis products for CFT (a), CWT (b) and FCT (c).
3D TG/FTIR diagram of pyrolysis products for CFT (a), CWT (b) and FCT (c).

Figure 4

FTIR spectra of volatile products at peak temperature for tobacco samples.
FTIR spectra of volatile products at peak temperature for tobacco samples.

Figure 5

Evolution of gas products with increasing temperature in the pyrolysis of tobacco.
Evolution of gas products with increasing temperature in the pyrolysis of tobacco.

Figure 6

Arrhenius plots of FWO method for CFT (a), CWT (b) and FCT (c) at different conversion rates.
Arrhenius plots of FWO method for CFT (a), CWT (b) and FCT (c) at different conversion rates.

Figure 7

Arrhenius plots of KAS method for CFT (a), CWT (b) and FCT (c) at different conversion rates.
Arrhenius plots of KAS method for CFT (a), CWT (b) and FCT (c) at different conversion rates.

Figure 8

Changes in Ea versus α obtained by applying the FWO and KAS methods.
Changes in Ea versus α obtained by applying the FWO and KAS methods.

Figure 9

y(α) versus α curves at 10 °C min−1 calculated by Equation [8] for tobacco leaves, (a) CFT, (b) CWT, (c) FCT.
y(α) versus α curves at 10 °C min−1 calculated by Equation [8] for tobacco leaves, (a) CFT, (b) CWT, (c) FCT.

Composition of tobacco leaves_

ItemCFTCWTFCT
Proximate analysis (wt.%)
Moisture2.953.841.89
Volatile77.3175.4176.79
Fixed carbon12.8011.1916.76
Ash9.8913.406.54
Ultimate analysis (wt.%)
C43.5742.9541.83
H5.886.176.32
N3.633.771.67
S0.000.180.17
O36.5237.4143.28
Biochemical analysis (wt.%)
Hemicellulose2.253.242.81
Cellulose11.3513.1214.26
Lignin2.843.653.21
Nicotine content (wt.%)2.202.332.07

Characteristic parameters of tobacco leaves during pyrolysis_

SampleTS (°C)Tmax (°C)Rmax (% min−1)Rmean (% min−1)ΔT1/2 (°C)Di (10−7%2 °C−3 min−2)Residue (%)
CFT
 5130313−2.01−0.431052.0224.46
10134323−3.96−0.861126.9924.73
15142330−5.78−1.2712112.9125.71
20146335−7.65−1.6812221.6126.11
CWT
 5131297−2.16−0.43723.3024.75
10140307−4.21−0.837610.6227.56
15144310−6.22−1.237921.6128.25
20151315−8.18−1.628233.9428.97
FCT
 5101188−1.82−0.47607.5118.75
10103197−3.73−0.926227.3020.06
15108201−5.60−1.366454.8021.38
20115206−7.30−1.806585.3021.82

Identification of gas products during pyrolysis of tobacco based on FTIR spectra_

Wavenumber (cm−1)Functional groupsCompoundsReferences
3500–4000 (selected:3566)O-H Symmetrical and asymmetrical stretchingH2O(14, 42, 45)
2250–2500 (selected:2359)Asymmetrical stretching in O=C=OCO2(14, 45)
2850–3030 (selected:3016)C-H StretchingCH4(43)
2000–2250 (selected:2190)Stretching vibration in COCO(14, 45)
1710–1800 (selected:1749)C=O StretchingCarbonyl groups(14, 45)
1050–1200 (selected:1180)C-O StretchHydroxyl groups(14)
1450–1650Aromatic C=C-C ring stretchAromatics(42, 43)
3070–3130 (selected:3076)Aromatic C-H in plane bend
966 NH3(42)

Kinetic parameters of tobacco thermal decomposition obtained by Coats-Redfern method_

SampleStageReactionFitted equationA (min−1)Ea (kJ mol−1)Correlation coefficient R2
CFTIID1Y = −10165.86x + 6.094.49 × 10484.50.995
IIIF3/2Y = −23551.40x + 26.447.12 × 1013195.80.990
F2Y = −28195.40x + 34.482.65 × 1017234.40.997
CWTIID1Y = −10305.79x + 5.307.74 × 10485.70.998
IIIF3/2Y = −22403.96x + 25.264.17 × 1013186.20.963
F2Y = −27020.35x + 33.401.73 × 1017224.70.984

Mass loss at different temperature intervals during pyrolysis of tobacco leaf samples_

SampleStage IStage IIStage III

Temperature interval (°C)Mass loss (%)Temperature interval (°C)Mass loss (%)Temperature interval (°C)Mass loss (%)
CFT
 540–1302.84130–28322.60283–39726.43
1040–1342.88134–29223.26292–41126.78
1540–1423.03142–29623.07296–41526.77
2040–1463.06146–29923.35299–42427.34
CWT
 540–1312.81131–27320.04273–40725.33
1040–1402.85140–28420.83284–41724.65
1540–1442.84144–28720.94287–41924.32
2040–1512.96151–29121.08291–42624.44
FCT
 540–1011.29101–21621.09216–40138.82
1040–1031.10103–22722.27227–40538.41
1540–1081.15108–23221.76232–40838.19
2040–1151.27115–24022.12240–41637.40

Activation energies of cigar tobacco leaves obtained by the FWO method and KAS method_

ConversionCFTCWTFCT



FWOKASDifferenceFWOKASDifferenceFWOKASDifference



Ea (kJ mol−1)Correlation coefficient R2Ea (kJ mol−1)Correlation coefficient R2(%)Ea (kJ mol−1)Correlation coefficient R2Ea (kJ mol−1)Correlation coefficient R2(%)Ea (kJ mol−1)Correlation coefficient R2Ea (kJ mol−1)Correlation coefficient R2(%)
0.1207.40.984210.30.9821.40160.40.993161.00.9930.35102.20.999100.10.9991.02
0.2249.90.995254.20.9941.72206.90.987209.10.9861.05120.40.999118.90.9990.76
0.3253.50.994257.60.9941.59229.30.990232.20.9891.26121.40.996119.60.9960.92
0.4252.20.995255.90.9941.42228.80.992231.40.9911.12155.40.994154.70.9940.35
0.5222.20.995224.00.9940.77215.60.993217.20.9930.74172.30.996172.00.9960.15
0.6219.30.994220.60.9930.58221.90.994223.50.9940.74171.90.996171.20.9960.38
0.7266.40.999269.70.9881.21238.00.989240.00.9880.82173.50.998172.50.9980.52
0.8301.30.992305.70.9911.43234.30.994235.20.9940.38162.60.984160.50.9821.06
0.9315.20.993319.30.9931.28259.30.994260.50.9940.45192.10.983190.40.9800.84
Average254.2 257.5 221.6 223.3 155.4 151.1

Functional expressions of several common response models_

MechanismsSymbolG(α)f(α)
One-dimensional diffusionD1α2 12α1 {1 \over 2}{\alpha ^{ - 1}}
Two-dimensional diffusionD2α + (1 − α)ln(1 − α)[−ln(1 − α)]−1
Three-dimensional diffusionD3 [1(1α)13]2 {\left[ {1 - {{\left( {1 - \alpha } \right)}^{{1 \over 3}}}} \right]^2} 32(1α)23[1(1α)13]1 {3 \over 2}{\left( {1 - \alpha } \right)^{{2 \over 3}}}{\left[ {1 - {{\left( {1 - \alpha } \right)}^{{1 \over 3}}}} \right]^{ - 1}}
Avrami-ErofeevA2 [ln(1α)]12 {\left[ { - \ln \left( {1 - \alpha } \right)} \right]^{{1 \over 2}}} 2(1α)[ln(1α)]12 2\left( {1 - \alpha } \right){\left[ { - \ln \left( {1 - \alpha } \right)} \right]^{{1 \over 2}}}
Avrami-ErofeevA3 [ln(1α)]13 {\left[ { - \ln \left( {1 - \alpha } \right)} \right]^{{1 \over 3}}} 3(1α)[ln(1α)]23 3\left( {1 - \alpha } \right){\left[ { - \ln \left( {1 - \alpha } \right)} \right]^{{2 \over 3}}}
First-order reactionF1−ln(1 − α)1 − α
1.5-order reactionF3/2 2[(1α)12]2 2\left[ {{{\left( {1 - \alpha } \right)}^{-{1 \over 2}}}} \right] - 2 (1α)32 {\left( {1 - \alpha } \right)^{{3 \over 2}}}
Second-order reactionF2(1 − α)−1 − 1(1 − α)2
Contracting areaR2 1(1α)12 1 - {\left( {1 - \alpha } \right)^{{1 \over 2}}} 2(1α)12 2{\left( {1 - \alpha } \right)^{{1 \over 2}}}
3D contracting volumeR3 1(1α)13 1 - {\left( {1 - \alpha } \right)^{{1 \over 3}}} 3(1α)23 3{\left( {1 - \alpha } \right)^{{2 \over 3}}}
Language: English
Page range: 29 - 43
Submitted on: Aug 17, 2020
|
Accepted on: Feb 17, 2021
|
Published on: Apr 20, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Anran Wang, Bin Cai, Lili Fu, Miao Liang, Xiangdong Shi, Bing Wang, Nan Deng, Bin Li, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.