References
- Abualsaud, K., Elfouly, T.M., Khattab, T., Yaacoub, E., Ismail, L.S., Ahmed, M.H. & Guizani, M. 2018. A survey on mobile crowd-sensing and its applications in the IoT era. Ieee access, 7: 3855-3881. http://dx.doi.org/10.1109/ACCESS.2018.2885918
- Adenle, A.A., Azadi, H. & Manning, L. 2018. The era of sustainable agricultural development in Africa: Understanding the benefits and constraints. Food reviews international, 34(5): 411-433. http://dx.doi.org/10.1080/87559129.2017.1300913
- Adewusi, A.O., Asuzu, O.F., Olorunsogo, T., Iwuanyanwu, C., Adaga, E. & Daraojimba, D.O. 2024. AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews, 21(1): 2276-2285. https://doi.org/10.30574/wjarr.2024.21.1.0314
- Adeyemi, O., Grove, I., Peets, S. & Norton, T. 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability, 9(3): 353. https://doi.org/10.3390/su9030353
- Agrawal, J. & Arafat, M.Y. 2024. Transforming Farming: A Review of AI-Powered UAV Technologies in Precision Agriculture. Drones, 8(11): 2504-446X. https://doi.org/10.3390/drones8110664
- Aitkenhead, M.J., Dalgetty, I.A., Mullins, C.E., McDonald, A.J.S. & Strachan, N.J.C. 2003. Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and electronics in Agriculture, 39(3): 157-171. https://doi.org/10.1016/S0168-1699(03)00076-0
- Akbar, J.U.M., Kamarulzaman, S.F., Muzahid, A.J.M., Rahman, M.A. & Uddin, M. 2024. A comprehensive review on deep learning assisted computer vision techniques for smart greenhouse agriculture. IEEE Access, 12: 4485-4522. http://dx.doi.org/10.1109/ACCESS.2024.3349418
- Alam, M.A., Ahad, A., Zafar, S. & Tripathi, G. 2020. A neoteric smart and sustainable farming environment incorporating blockchain‐based artificial intelligence approach. Cryptocurrencies and Blockchain Technology Applications, 197-213. http://dx.doi.org/10.1002/9781119621201.ch11
- Al-bayati, J.S.H. & Üstündağ, B.B. 2020. Artificial intelligence in smart agriculture: Modified evolutionary optimization approach for plant disease identification. 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). pp: 1-6. IEEE. http://dx.doi.org/10.1109/ISMSIT50672.2020.9255323
- Ali, I., Sabir, S. & Ullah, Z. 2019. Internet of things security, device authentication and access control: a review. arXiv:1901.07309. https://doi.org/10.48550/arXiv.1901.07309
- Ali, A., Hussain, T., Tantashutikun, N., Hussain, N. & Cocetta, G. 2023. Application of smart techniques, internet of things and data mining for resource use efficient and sustainable crop production. Agriculture, 13(2): 397. https://doi.org/10.3390/agriculture13020397
- Alreshidi, E. 2019. Smart sustainable agriculture (SSA) solution underpinned by internet of things (IoT) and artificial intelligence (AI). arXiv:1906.03106. https://doi.org/10.48550/arXiv.1906.03106
- Altieri, M.A., Funes-Monzote, F.R. & Petersen, P. 2012. Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agronomy for sustainable development, 32(1): 1-13. https://doi.org/10.1007/s13593-011-0065-6
- AlZubi, A.A. & Galyna, K. 2023. Artificial intelligence and internet of things for sustainable farming and smart agriculture.Ieee Access, 11: 78686-78692. http://dx.doi.org/10.1109/ACCESS.2023.3298215
- Ammar, M., Haleem, A., Javaid, M., Bahl, S. & Nandan, D. 2022. Improving the performance of supply chain through industry 4.0 technologies. Advancement in Materials, Manufacturing and Energy Engineering, Vol. II: Select Proceedings of ICAMME 2021. pp: 197-209. Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-16-8341-1_16
- Arora, C., Kamat, A., Shanker, S. & Barve, A. 2022. Integrating agriculture and industry 4.0 under “agri-food 4.0” to analyze suitable technologies to overcome agronomical barriers. British food journal, 124(7): 2061-2095. https://doi.org/10.1108/bfj-08-2021-0934
- Ashima, R., Haleem, A., Bahl, S., Javaid, M., Mahla, S.K. & Singh, S. 2021. Automation and manufacturing of smart materials in Additive Manufacturing technologies using Internet of Things towards the adoption of Industry 4.0. Materials Today: Proceedings, 45: 5081-5088. https://doi.org/10.1016/j.matpr.2021.01.583
- Aslan, M.F., Durdu, A., Sabanci, K., Ropelewska, E. & Gültekin, S.S. 2022. A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3): 1047. https://doi.org/10.3390/app12031047
- Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A. & Aggoune, E.H.M. 2019. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access, 7: 129551-129583. https://doi.org/10.1109/ACCESS.2019.2932609
- Balyan, S., Jangir, H., Tripathi, S. N., Tripathi, A., Jhang, T. & Pandey, P. 2024. Seeding a sustainable future: navigating the digital horizon of smart agriculture. Sustainability, 16(2): 475. https://doi.org/10.3390/su16020475
- Banthia, V. & Chaudaki, G. 2022. The study on use of artificial intelligence in agriculture. Journal of Advanced Research in Applied Artificial Intelligence and Neural Network, 5(2): 18-22.
- Barburiceanu, S., Meza, S., Orza, B., Malutan, R. & Terebes, R. 2021. Convolutional neural networks for texture feature extraction. Applications to leaf disease classification in precision agriculture. IEEE Access,9: 160085-160103. http://dx.doi.org/10.1109/ACCESS.2021.3131002
- Barenkamp, M. 2020. A new IoT gateway for artificial intelligence in agriculture. International Conference on Electrical, Communication, and Computer Engineering (ICECCE). pp: 1-5. IEEE. http://dx.doi.org/10.1109/ICECCE49384.2020.9179418
- Bellon-Maurel, V., Short, M.D., Roux, P., Schulz, M. & Peters, G.M. 2014. Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies–part I: concepts and technical basis. Journal of cleaner production, 69: 60-66. http://dx.doi.org/10.1016/j.jclepro.2014.09.095
- Ben Ayed, R. & Hanana, M. 2021. Artificial intelligence to improve the food and agriculture sector. Journal of Food Quality, 2021(1): 5584754. https://doi.org/10.1155/2021/5584754
- Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D. & Bochtis, D. 2021. Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11): 3758. https://doi.org/10.3390/s21113758
- Bestelmeyer, B.T., Marcillo, G., McCord, S.E., Mirsky, S., Moglen, G., Neven, L.G. & Wakie, T. 2020. Scaling up agricultural research with artificial intelligence. IT Professional, 22(3): 33-38. http://dx.doi.org/10.1109/MITP.2020.2986062
- Bhar, L.M., Ramasubramanian, V., Arora, A., Marwaha, S. & Parsad, R. 2019. Era of Artificial Intelligence prospects for Indian agriculture. Indian Farming, 69(3).
- Bharti, V.K. & Bhan, S. 2018. Impact of artificial intelligence for agricultural sustainability. Journal of Soil and Water Conservation, 17(4): 393-399.
- Bhat, S.A. & Huang, N.F. 2021. Big data and AI revolution in precision agriculture: Survey and challenges. Ieee Access, 9: 110209-110222. https://doi.org/10.1109/ACCESS.2021.3102227
- Bouwer, H. 2000. Integrated water management: emerging issues and challenges. Agricultural water management, 45(3): 217-228. https://doi.org/10.1016/S0378-3774(00)00092-5
- Castro-Maldonado, J.J., Patiño-Murillo, J.A., Florian-Villa, A.E. & Guadrón-Guerrero, O.E. 2018. Application of computer vision and low-cost artificial intelligence for the identification of phytopathogenic factors in the agro-industry sector. Journal of Physics: Conference Series, 1126(1): 012022. IOP Publishing. http://dx.doi.org/10.1088/1742-6596/1126/1/012022
- Chandra, V., Hareendran, A. & Albaaji, G.F. Precision farming for sustainability: An agricultural intelligence model. Computers and Electronics in Agriculture, 226: 109386. https://doi.org/10.1016/j.compag.2024.109386
- Channe, H., Kothari, S. & Kadam, D. 2015. Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing & big-data analysis. International Journal of Computer Technology and Applications, 6(3): 374-382.
- Charania, I. & Li, X. 2020. Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet of Things, 9: 100142. https://doi.org/10.1016/j.iot.2019.100142
- Chartres, C.J. & Noble, A. 2015. Sustainable intensification: overcoming land and water constraints on food production. Food security, 7: 235-245. http://dx.doi.org/10.1007/s12571-015-0425-1
- Chataut, R., Phoummalayvane, A. & Akl, R. 2023. Unleashing the power of IoT: A comprehensive review of IoT applications and future prospects in healthcare, agriculture, smart homes, smart cities, and industry 4.0. Sensors, 23(16): 7194. https://doi.org/10.3390/s23167194
- Chauhan, U., Sharma, D., Saleem, S., Kumar, M. & Singh, S.P. 2022. Artificial intelligence-based sustainable agricultural practices. Artificial Intelligence Applications in Agriculture and Food Quality Improvement.pp: 1-16. IGI Global. https://doi.org/10.4018/978-1-6684-5141-0.ch001
- Cheng, C., Fu, J., Su, H. & Ren, L. 2023. Recent advancements in agriculture robots: Benefits and challenges. Machines, 11(1): 48. https://doi.org/10.3390/machines11010048
- Chougule, M.A. & Mashalkar, A.S. 2022. A comprehensive review of agriculture irrigation using artificial intelligence for crop production. Computational Intelligence in Manufacturing, 187-200. http://dx.doi.org/10.1016/B978-0-323-91854-1.00002-9
- Chukkapalli, S.S.L., Mittal, S., Gupta, M., Abdelsalam, M., Joshi, A., Sandhu, R. & Joshi, K. 2020. Ontologies and artificial intelligence systems for the cooperative smart farming ecosystem. Ieee Access, 8: 164045-164064. https://doi.org/10.1109/ACCESS.2020.3022763
- Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarriá, D. & Menesatti, P. 2013. A review on agri-food supply chain traceability by means of RFID technology. Food and bioprocess technology, 6: 353-366. https://doi.org/10.1007/s11947-012-0958-7
- Costa, L., Archer, L., Ampatzidis, Y., Casteluci, L., Caurin, G.A. & Albrecht, U. 2021. Determining leaf stomatal properties in citrus trees utilizing machine vision and artificial intelligence. Precision Agriculture, 22: 1107-1119. https://link.springer.com/article/10.1007/s11119-020-09771-x
- Costa, F., Frecassetti, S., Rossini, M. & Portioli-Staudacher, A. 2023. Industry 4.0 digital technologies enhancing sustainability: Applications and barriers from the agricultural industry in an emerging economy. Journal of Cleaner Production, 408: 137208. https://doi.org/10.1016/j.jclepro.2023.137208
- Crane-Droesch, A. 2018. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11): 114003. https://doi.org/10.1088/1748-9326/aae159
- Dahbur, K., Mohammad, B. & Tarakji, A.B. 2011. A survey of risks, threats and vulnerabilities in cloud computing. Proceedings of the 2011 International conference on intelligent semantic Web-services and applications. pp: 1-6. https://doi.org/10.1145/1980822.1980834
- Dakir, A., Barramou, F. & Alami, O.B. 2022. Opportunities for artificial intelligence in precision agriculture using satellite remote sensing. Geospatial Intelligence: Applications and Future Trends, 107-117. http://dx.doi.org/10.1007/978-3-030-80458-9_8
- Daoliang, L.I. & Chang, L.I.U. 2020. Recent advances and future outlook for artificial intelligence in aquaculture. Smart agriculture, 2(3): 1. https://doi.org/10.12133/j.smartag.2020.2.3.202004-SA007
- Das, A., Senapati, M. & John, J. 2009. Impact of agricultural credit on agriculture production: an empirical analysis in India. Reserve Bank of India Occasional Papers, 30(2): 75-107.
- Dayıoğlu, M.A. & Turker, U. 2021. Digital transformation for sustainable future-agriculture 4.0: A review. Journal of Agricultural Sciences, 27(4): 373-399. http://dx.doi.org/10.15832/ankutbd.986431
- De Abreu, C.L. & van Deventer, J.P. 2022. The application of artificial intelligence (AI) and internet of things (IoT) in agriculture: A systematic literature review. Southern African Conference for Artificial Intelligence Research. pp: 32-46. Springer, Cham. https://doi.org/10.1007/978-3-030-95070-5_3
- Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S. & Kaliaperumal, R. 2022. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10): 1745. https://doi.org/10.3390/agriculture12101745
- Dhanya, V.G., Subeesh, A., Kushwaha, N.L., Vishwakarma, D.K., Kumar, T.N., Ritika, G. & Singh, A.N. 2022. Deep learning based computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture, 6: 211-229. https://doi.org/10.1016/j.aiia.2022.09.007
- Domingues, T., Brandão, T. & Ferreira, J.C. 2022. Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey. Agriculture, 12(9): 1350. https://doi.org/10.3390/agriculture12091350
- Dora, M., Kumar, A., Mangla, S.K., Pant, A. & Kamal, M.M. 2022. Critical success factors influencing artificial intelligence adoption in food supply chains. International Journal of Production Research, 60(14): 4621-4640. http://dx.doi.org/10.1080/00207543.2021.1959665
- Duckett, T., Pearson, S., Blackmore, S., Grieve, B., Chen, W.H., Cielniak, G. & Yang, G.Z. 2018. Agricultural robotics: the future of robotic agriculture. arXiv, 1806.06762. https://doi.org/10.48550/arXiv.1806.06762
- Elbasi, E., Mostafa, N., AlArnaout, Z., Zreikat, A.I., Cina, E., Varghese, G. & Zaki, C. 2022. Artificial intelligence technology in the agricultural sector: A systematic literature review. IEEE access, 11: 171-202. https://doi.org/10.1109/ACCESS.2022.3232485
- Elbasi, E., Zaki, C., Topcu, A.E., Abdelbaki, W., Zreikat, A.I., Cina, E. & Saker, L. 2023. Crop prediction model using machine learning algorithms. Applied Sciences, 13(16): 9288. https://doi.org/10.3390/app13169288
- Elijah, O., Rahman, T.A., Orikumhi, I., Leow, C.Y. & Hindia, M.N. 2018. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of things Journal, 5(5): 3758-3773. https://doi.org/10.1109/JIOT.2018.2844296
- El-Ramady, H.R. 2014. Integrated nutrient management and postharvest of crops. Sustainable Agriculture Reviews: 13: 163-274. https://doi.org/10.1007/978-3-319-00915-5_8
- Ennouri, K., Smaoui, S., Gharbi, Y., Cheffi, M., Ben Braiek, O., Ennouri, M. & Triki, M. A. 2021. Usage of artificial intelligence and remote sensing as efficient devices to increase agricultural system yields. Journal of Food Quality, 2021(1): 6242288. https://doi.org/10.1155/2021/6242288
- Escamilla-García, A., Soto-Zarazúa, G.M., Toledano-Ayala, M., Rivas-Araiza, E. & Gastélum-Barrios, A. 2020. Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Applied Sciences, 10(11): 3835. https://doi.org/10.3390/app10113835
- Espinel, R., Herrera-Franco, G., Rivadeneira García, J.L. & Escandón-Panchana, P. 2024. Artificial intelligence in agricultural mapping: A review. Agriculture, 14(7): 1071. https://doi.org/10.3390/agriculture14071071
- Fadziso, T. 2019. Implementation of artificial intelligence in agriculture: a review for CMS optimization. Malaysian Journal of Medical and Biological Research, 6(2): 127-134.
- Fageria, N.K. 2002. Soil quality vs. environmentally-based agricultural management practices. Communications in soil science and plant analysis, 33(13-14): 2301-2329. https://doi.org/10.1081/CSS-120005764
- Farooq, M.S., Javid, R., Riaz, S. & Atal, Z. 2022. IoT based smart greenhouse framework and control strategies for sustainable agriculture. IEEE Access, 10: 99394-99420. https://doi.org/10.1109/ACCESS.2022.3204066
- Fazal, N., Haleem, A., Bahl, S., Javaid, M. & Nandan, D. 2022. Digital management systems in manufacturing using industry 5.0 technologies. Advancement in Materials, Manufacturing and Energy Engineering, Vol. II: Select Proceedings of ICAMME 2021. pp: 221-234. Singapore: Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-16-8341-1_18
- Fennimore, S.A., Slaughter, D.C., Siemens, M.C., Leon, R.G. & Saber, M.N. 2016. Technology for automation of weed control in specialty crops. Weed Technology, 30(4): 823-837. http://dx.doi.org/10.1614/WT-D-16-00070.1
- Fess, T.L., Kotcon, J.B. & Benedito, V.A. 2011. Crop breeding for low input agriculture: a sustainable response to feed a growing world population. Sustainability, 3(10): 1742-1772. https://doi.org/10.3390/su3101742
- Forcén-Muñoz, M., Pavón-Pulido, N., López-Riquelme, J.A., Temnani-Rajjaf, A., Berríos, P., Morais, R. & Pérez-Pastor, A. 2021. Irriman platform: Enhancing farming sustainability through cloud computing techniques for irrigation management. Sensors, 22(1): 228. https://doi.org/10.3390/s22010228
- Fuentes, S., Gonzalez Viejo, C., Cullen, B., Tongson, E., Chauhan, S.S. & Dunshea, F.R. 2020. Artificial intelligence applied to a robotic dairy farm to model milk productivity and quality based on cow data and daily environmental parameters. Sensors, 20(10): 2975. https://doi.org/10.3390/s20102975
- Fuentes-Peñailillo, F., Gutter, K., Vega, R. & Silva, G. C. 2024. Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks,13(4): 39. https://doi.org/10.3390/jsan13040039
- Ganeshkumar, C., Jena, S.K., Sivakumar, A. & Nambirajan, T. 2023. Artificial intelligence in agricultural value chain: review and future directions. Journal of Agribusiness in Developing and Emerging Economies, 13(3): 379-398. http://dx.doi.org/10.1108/JADEE-07-2020-0140
- Galaz, V., Centeno, M.A., Callahan, P.W., Causevic, A., Patterson, T., Brass, I. & Levy, K. 2021. Artificial intelligence, systemic risks, and sustainability. Technology in society, 67: 101741. https://doi.org/10.1016/j.techsoc.2021.101741
- Garrett, K.A., Bebber, D.P., Etherton, B.A., Gold, K.M., Plex Sulá, A.I. & Selvaraj, M.G. 2022. Climate change effects on pathogen emergence: Artificial intelligence to translate big data for mitigation. Annual Review of Phytopathology, 60(1): 357-378. https://doi.org/10.1146/annurev-phyto-021021-042636
- Getahun, S., Kefale, H. & Gelaye, Y. 2024. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. The Scientific World Journal, 2024(1): 2126734. https://doi.org/10.1155/2024/2126734
- Ghatrehsamani, S., Jha, G., Dutta, W., Molaei, F., Nazrul, F., Fortin, M. & Neupane, J. 2023. Artificial intelligence tools and techniques to combat herbicide resistant weeds - a review. Sustainability, 15(3): 1843. https://doi.org/10.3390/su15031843
- Ghosh, S. & Singh, A. 2020. The scope of Artificial Intelligence in mankind: A detailed review. Journal of Physics: Conference Series. 1531 (1): 012045. IOP Publishing. https://doi.org/10.1088/1742-6596/1531/1/012045
- Gill, S.S., Tuli, S., Xu, M., Singh, I., Singh, K.V., Lindsay, D. & Garraghan, P. 2019. Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet of Things, 8: 100118. https://doi.org/10.1016/j.iot.2019.100118
- Giller, K.E., Delaune, T., Silva, J.V., Descheemaeker, K., Van De Ven, G., Schut, A.G. & van Ittersum, M.K. 2021. The future of farming: Who will produce our food?. Food Security, 13(5): 1073-1099. https://doi.org/10.1007/s12571-021-01184-6
- Giri, A., Saxena, D.R.R., Saini, P. & Rawte, D.S. 2020. Role of artificial intelligence in advancement of agriculture. International Journal of Chemical Studies, 8(2): 375-380. http://dx.doi.org/10.22271/chemi.2020.v8.i2f.8796
- Goldstein, A., Fink, L. & Ravid, G. 2022. A cloud-based framework for agricultural data integration: A top-down-bottom-up approach. IEEE Access, 10: 88527-88537. http://dx.doi.org/10.1109/ACCESS.2022.3198099
- Hadidi, A., Saba, D. & Sahli, Y. 2021. The role of artificial neuron networks in intelligent agriculture (case study: greenhouse). Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, 45-67. http://dx.doi.org/10.1007/978-3-030-51920-9_4
- Hassan, M.U., Ullah, M. & Iqbal, J. 2016. Towards autonomy in agriculture: Design and prototyping of a robotic vehicle with seed selector. 2nd International Conference on Robotics and Artificial Intelligence (ICRAI). pp: 37-44. IEEE. http://dx.doi.org/10.1109/ICRAI.2016.7791225
- Hemming, S., de Zwart, F., Elings, A., Righini, I. & Petropoulou, A. 2019. Remote control of greenhouse vegetable production with artificial intelligence—greenhouse climate, irrigation, and crop production. Sensors, 19(8): 1807. https://doi.org/10.3390/s19081807
- Herrero, M., Thornton, P.K., Gerber, P. & Reid, R.S. 2009. Livestock, livelihoods and the environment: understanding the trade-offs. Current Opinion in Environmental Sustainability, 1(2): 111-120. https://doi.org/10.1016/j.cosust.2009.10.003
- Hou, R. & Wen, C. 2021. Sustainable tea garden ecotourism based on the multifunctionality of organic agriculture based on artificial intelligence technology. Mobile Information Systems, 2021(1): 8696490. https://doi.org/10.1155/2021/8696490
- Hyunjin, C. 2020. A study on the change of farm using artificial intelligence focused on smart farm in Korea. Journal of Physics: Conference Series. 1642 (1): 012025. IOP Publishing. http://dx.doi.org/10.1088/1742-6596/1642/1/012025
- Hyunjin, C. & Sainan, H. 2021. A study on the design and operation method of plant factory using artificial intelligence. Nanotechnology for Environmental Engineering, 6(3): 41. https://link.springer.com/article/10.1007/s41204-021-00136-x
- Ikegwu, A.C., Nweke, H.F., Anikwe, C.V., Alo, U.R. & Okonkwo, O.R. 2022. Big data analytics for data-driven industry: a review of data sources, tools, challenges, solutions, and research directions. Cluster Computing, 25(5): 3343-3387. http://dx.doi.org/10.1007/s10586-022-03568-5
- Jaber, M.M., Ali, M.H., Abd, S.K., Jassim, M.M., Alkhayyat, A., Aziz, H.W. & Alkhuwaylidee, A.R. 2022. Predicting climate factors based on big data analytics based agricultural disaster management. Physics and Chemistry of the Earth, Parts A/B/C, 128: 103243. http://dx.doi.org/10.1016/j.pce.2022.103243
- Javaid, M., Haleem, A., Khan, I. H. & Suman, R. 2023. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1): 15-30. https://doi.org/10.1016/j.aac.2022.10.001
- Jayalakshmi, M. & Gomathi, V. 2020. Sensor-cloud based precision agriculture approach for intelligent water management. International Journal of Plant Production, 14(2): 177-186. https://ui.adsabs.harvard.edu/link_gateway/2020IJPP...14..177J/doi:10.1007/s42106-019-00077-1
- Jha, K., Doshi, A., Patel, P. & Shah, M. 2019. A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2: 1-12. https://doi.org/10.1016/j.aiia.2019.05.004
- Jiayu, Z., Shiwei, X., Zhemin, L., Wei, C. & Dongjie, W. 2015. Application of intelligence information fusion technology in agriculture monitoring and early-warning research. International Conference on Control, Automation and Robotics. pp: 114-117. IEEE. http://dx.doi.org/10.1109/ICCAR.2015.7166013
- Joseph, R.B., Lakshmi, M.B., Suresh, S. & Sunder, R. 2020. Innovative analysis of precision farming techniques with artificial intelligence. 2nd international conference on innovative mechanisms for industry applications (ICIMIA). pp: 353-358. IEEE. http://dx.doi.org/10.1109/ICIMIA48430.2020.9074937
- Joseph, A., Chandra, J. & Siddharthan, S. 2021. Genome analysis for precision agriculture using artificial intelligence: A survey. In: Jat, D.S., Shukla, S., Unal, A., Mishra, D.K. (eds) Data Science and Security. Lecture Notes in Networks and Systems, vol 132. Springer, Singapore.pp: 221-226. Springer Singapore. http://dx.doi.org/10.1007/978-981-15-5309-7_23
- Kakani, V., Nguyen, V.H., Kumar, B.P., Kim, H. & Pasupuleti, V.R. 2020. A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 2: 100033. https://doi.org/10.1016/j.jafr.2020.100033
- Kalyani, Y. & Collier, R. 2021. A systematic survey on the role of cloud, fog, and edge computing combination in smart agriculture. Sensors, 21(17): 5922. https://doi.org/10.3390/s21175922
- Kamilaris, A. & Prenafeta-Boldú, F.X. 2018. A review of the use of convolutional neural networks in agriculture. The Journal of Agricultural Science, 156(3): 312-322. https://doi.org/10.1017/S0021859618000436
- Kashyap, B. & Kumar, R. 2021. Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access, 9: 14095-14121. http://dx.doi.org/10.1109/ACCESS.2021.3052478
- Katyayan, A., Mashelkar, S., DC, A.G. & Morajkar, S. 2021. Design of smart agriculture systems using artificial intelligence and big data analytics. 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). pp: 592-595. IEEE. http://dx.doi.org/10.1109/ICAC3N53548.2021.9725672
- Kaur, S. 2019. Artificial intelligence and internet of things in agriculture–A survey. Think India Journal, 22(30): 1410-1416.
- Kawai, T. & Mineno, H. 2020. Evaluation environment using edge computing for artificial intelligence-based irrigation system. 16th International Conference on Mobility, Sensing and Networking (MSN). pp: 214-219. IEEE. http://dx.doi.org/10.1109/MSN50589.2020.00046
- Kearney, J. 2010. Food consumption trends and drivers. Philosophical transactions of the royal society B: biological sciences, 365(1554): 2793-2807. https://doi.org/10.1098/rstb.2010.0149
- Khalifeh, A., AlQammaz, A., Darabkh, K.A., Sha’ar, B.A. & Ghatasheh, O. 2021. A framework for artificial intelligence assisted smart agriculture utilizing lorawan wireless sensor networks. Soft Computing Applications: Proceedings of the 8th International Workshop Soft Computing Applications (SOFA 2018).8 (II): pp: 408-421. Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-52190-5_29
- Khan, N., Ray, R.L., Sargani, G.R., Ihtisham, M., Khayyam, M. & Ismail, S. 2021. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability, 13(9): 4883. https://doi.org/10.3390/su13094883
- Kim, W.S., Lee, W.S. & Kim, Y.J. 2020. A review of the applications of the internet of things (IoT) for agricultural automation. Journal of Biosystems Engineering, 45: 385-400. https://doi.org/10.1007/s42853-020-00078-3
- Klerkx, L., Jakku, E. & Labarthe, P. 2019. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wageningen journal of life sciences, 90: 100315. https://doi.org/10.1016/j.njas.2019.100315
- Klerkx, L. & Rose, D. 2020. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security, 24: 100347. https://doi.org/10.1016/j.gfs.2019.100347
- Kodama, T. & Hata, Y. 2018. Development of classification system of rice disease using artificial intelligence. IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp: 3699-3702. IEEE. http://dx.doi.org/10.1109/SMC.2018.00626
- Kowalska, A. & Ashraf, H. 2023. Advances in deep learning algorithms for agricultural monitoring and management. Applied Research in Artificial Intelligence and Cloud Computing, 6(1): 68-88.
- Kshetri, N. 2020. Artificial Intelligence in Developing Countries. IT Professional, 22(4): 63-68. https://doi.org/10.1109/MITP.2019.2951851
- Kujawa, S. & Niedbała, G. 2021. Artificial neural networks in agriculture. Agriculture, 11(6): 497. http://dx.doi.org/10.3390/agriculture11060497
- Kumar, I., Rawat, J., Mohd, N. & Husain, S. 2021a. Opportunities of artificial intelligence and machine learning in the food industry. Journal of Food Quality, 2021(1): 4535567. https://doi.org/10.1155/2021/4535567
- Kumar, S., Patil, R.R., Kumawat, V., Rai, Y., Krishnan, N. & Singh, S. 2021b. A bibliometric analysis of plant disease classification with artificial intelligence using convolutional neural network. Library Philosophy and Practice, 1-14.
- Kumar, V., Sharma, K.V., Kedam, N., Patel, A., Kate, T.R. & Rathnayake, U. 2024. A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agricultural Technology, 100487. https://doi.org/10.1016/j.atech.2024.100487
- Kun, W. 2020. Design of multi-parameter monitoring system for intelligent agriculture greenhouse based on artificial intelligence. Multimedia Technology and Enhanced Learning: Second EAI International Conference, ICMTEL 2020, Leicester, UK, April 10-11, 2020, Proceedings, Part I 2. pp: 269-280. Springer International Publishing. https://doi.org/10.1007/978-3-030-51100-5_24
- Kushkhova, B.A., Gazaeva, M.S., Gyatov, A.V., Ivanova, Z.M. & Eneeva, M.N. 2019. Artificial intelligence in agriculture of Kabardino-Balkaria: current state, problems and prospects. IOP Conference Series: Earth and Environmental Science. 315(2): 022013. IOP Publishing. http://dx.doi.org/10.1088/1755-1315/315/2/022013
- Lakhiar, I.A., Yan, H., Zhang, C., Wang, G., He, B., Hao, B. & Rakibuzzaman, M. 2024. A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture, 14(7): 1141. https://doi.org/10.3390/agriculture14071141
- Lakshmi, V. & Corbett, J. 2020. How artificial intelligence improves agricultural productivity and sustainability: A global thematic analysis. Proceedings of the 53rd Hawaii International Conference on System Sciences. 5202-5211. https://doi.org/10.24251/HICSS.2020.639
- Lal, R. 2006. Managing soils for feeding a global population of 10 billion. Journal of the Science of Food and Agriculture, 86(14): 2273-2284. http://dx.doi.org/10.1002/jsfa.2626
- Leal Filho, W., Wall, T., Mucova, S.A.R., Nagy, G.J., Balogun, A.L., Luetz, J.M. & Gandhi, O. 2022. Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180: 121662. https://doi.org/10.1016/j.techfore.2022.121662
- Lee, D.R. 2005. Agricultural sustainability and technology adoption: Issues and policies for developing countries. American journal of agricultural economics, 87(5): 1325-1334. https://doi.org/10.1111/j.1467-8276.2005.00826.x
- Liliane, T.N. & Charles, M.S. 2020. Factors affecting yield of crops. Agronomy-climate change & food security, 9: 9-24. https://doi.org/10.5772/intechopen.90672
- Liu, Y., Ma, X., Shu, L., Hancke, G.P. & Abu-Mahfouz, A.M. 2020. From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE transactions on industrial informatics, 17(6): 4322-4334. https://doi.org/10.1109/TII.2020.3003910
- Liu, J., Xiang, J., Jin, Y., Liu, R., Yan, J. & Wang, L. 2021a. Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey. Remote Sensing, 13(21): 4387. https://doi.org/10.3390/rs13214387
- Liu, Y., Pu, H. & Sun, D. W. 2021b. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends in Food Science & Technology, 113: 193-204. https://doi.org/10.1016/j.tifs.2021.04.042
- Lowe, M., Qin, R. & Mao, X. 2022. A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water, 14(9): 1384. https://doi.org/10.3390/w14091384
- Lowenberg-DeBoer, J., Huang, I. Y., Grigoriadis, V. & Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278-299. https://doi.org/10.1007/s11119-019-09667-5
- Lu, Y. 2019. Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of Management Analytics, 6(1): 1-29. https://doi.org/10.1080/23270012.2019.1570365
- Maraveas, C., Loukatos, D., Bartzanas, T. & Arvanitis, K. G. 2021. Applications of artificial intelligence in fire safety of agricultural structures. Applied Sciences, 11(16): 7716. https://doi.org/10.3390/app11167716
- Marcu, I.M., Suciu, G., Balaceanu, C.M. & Banaru, A. 2019. IoT based system for smart agriculture. 11th international conference on electronics, computers and artificial intelligence (ECAI). pp: 1-4). IEEE. http://dx.doi.org/10.1109/ECAI46879.2019.9041952
- Marinoudi, V., Sørensen, C.G., Pearson, S. & Bochtis, D. 2019. Robotics and labour in agriculture. A context consideration. Biosystems Engineering, 184: 111-121. https://doi.org/10.1016/j.biosystemseng.2019.06.013
- Mase, A.S. & Prokopy, L.S. 2014. Unrealized potential: A review of perceptions and use of weather and climate information in agricultural decision making. Weather, Climate, and Society, 6(1): 47-61. https://doi.org/10.1175/WCAS-D-12-00062.1
- Mathur, P. 2024. Cloud computing infrastructure, platforms, and software for scientific research. High Performance Computing in Biomimetics: Modeling, Architecture and Applications, 89-127. http://dx.doi.org/10.1007/978-981-97-1017-1_4
- Mir, H., Zaraatgari, R. & Sotoudeh, R. 2021. Improving the food and agriculture sector tehran stock exchange by using artificial intelligence. Agricultural Marketing and Commercialization, 5(2): 90-114.
- Mishra, H. & Mishra, D. 2023. Artificial intelligence and machine learning in agriculture: Transforming farming systems. Research Trends in Agriculture Science, 1: 1-16.
- Mishra, S., Sachan, R. & Rajpal, D. 2020. Deep convolutional neural network based detection system for real-time corn plant disease recognition. Procedia Computer Science, 167: 2003-2010. https://doi.org/10.1016/j.procs.2020.03.236
- Misra, N.N., Dixit, Y., Al-Mallahi, A., Bhullar, M.S., Upadhyay, R. & Martynenko, A. 2020. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of things Journal, 9(9): 6305-6324. https://doi.org/10.1109/JIOT.2020.2998584
- Mohamed, E.S., Belal, A.A., Abd-Elmabod, S.K., El-Shirbeny, M.A., Gad, A. & Zahran, M.B. 2021. Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3): 971-981. http://dx.doi.org/10.1016/j.ejrs.2021.08.007
- Mohapatra, H. & Rath, A.K. 2022. IoE based framework for smart agriculture: Networking among all agricultural attributes. Journal of ambient intelligence and humanized computing, 13(1): 407-424. https://link.springer.com/article/10.1007/s12652-021-02908-4
- Mohyuddin, G., Khan, M.A., Haseeb, A., Mahpara, S., Waseem, M. & Saleh, A.M. 2024. Evaluation of Machine Learning approaches for precision farming in Smart Agriculture System - A comprehensive Review. IEEE Access. http://dx.doi.org/10.1109/ACCESS.2024.3390581
- Monarca, D., Rossi, P., Alemanno, R., Cossio, F., Nepa, P., Motroni, A. & Cecchini, M. 2022. Autonomous vehicles management in agriculture with Bluetooth low energy (BLE) and passive radio frequency identification (RFID) for Obstacle Avoidance. Sustainability, 14(15): 9393. https://doi.org/10.3390/su14159393
- Monteiro, A., Santos, S. & Gonçalves, P. 2021. Precision agriculture for crop and livestock farming—Brief review. Animals, 11(8): 2345. https://doi.org/10.3390/ani11082345
- Monteiro, J. & Barata, J. 2021. Artificial intelligence in extended agri-food supply chain: A short review based on bibliometric analysis. Procedia Computer Science, 192: 3020-3029. https://doi.org/10.1016/j.procs.2021.09.074
- Moura, J. & Hutchison, D. 2016. Review and analysis of networking challenges in cloud computing. Journal of Network and Computer Applications, 60: 113-129. https://doi.org/10.1016/j.jnca.2015.11.015
- Mumtaz, N. & Nazar, M. 2022. Artificial intelligence robotics in agriculture: See & spray. Journal of Intelligent Pervasive and Soft Computing, 1(01): 21-24.
- Mutanga, O., Dube, T. & Galal, O. 2017. Remote sensing of crop health for food security in Africa: Potentials and constraints. Remote Sensing Applications: Society and Environment, 8: 231-239. https://doi.org/10.1016/j.rsase.2017.10.004
- Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G., Humber, M.L., Justice, C.J. & Sanchez, A. 2021. A review of satellite-based global agricultural monitoring systems available for Africa. Global Food Security, 29: 100543. https://ui.adsabs.harvard.edu/link_gateway/2021GlFS...2900543N/doi:10.1016/j.gfs.2021.100543
- Ngulube, P. 2025. Leveraging information and communication technologies for sustainable agriculture and environmental protection among smallholder farmers in tropical Africa. Discover Environment, 3(1): 1-17. https://doi.org/10.1007/s44274-025-00190-1
- Obaideen, K., Yousef, B.A., AlMallahi, M.N., Tan, Y.C., Mahmoud, M., Jaber, H. & Ramadan, M. 2022. An overview of smart irrigation systems using IoT. Energy Nexus, 7: 100124. https://doi.org/10.1016/j.nexus.2022.100124
- Obaisi, A.I., Adegbeye, M.J., Elghandour, M.M., Barbabosa-Pliego, A. & Salem, A.Z.M. 2022. Natural resource management and sustainable agriculture. In: Handbook of climate change mitigation and adaptation. pp: 2577-2613. Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-72579-2_133
- Ogidi, O.I. & Akpan, U.M. 2022. Aquatic biodiversity loss: impacts of pollution and anthropogenic activities and strategies for conservation. In: Biodiversity in Africa: potentials, threats and conservation. pp: 421-448. Singapore: Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-19-3326-4_16
- O’Grady, M.J., Langton, D. & O’Hare, G.M.P. 2019. Edge computing: A tractable model for smart agriculture? Artificial Intelligence in Agriculture, 3: 42-51. https://doi.org/10.1016/j.aiia.2019.12.001
- Orchi, H., Sadik, M. & Khaldoun, M. 2022. On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey. Agriculture, 12(1): 9. https://doi.org/10.3390/agriculture12010009
- Orn, D., Duan, L., Liang, Y., Siy, H. & Subramaniam, M. 2020. Agro-AI education: artificial intelligence for future farmers. Proceedings of the 21st annual conference on information technology education. pp: 54-57. https://doi.org/10.1145/3368308.3415457
- Padhiary, M., Saha, D., Kumar, R., Sethi, L.N. & Kumar, A. 2024. Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicle for farm automation. Smart Agricultural Technology, 100483. http://dx.doi.org/10.1016/j.atech.2024.100483
- Pallathadka, H., Jawarneh, M., Sammy, F., Garchar, V., Sanchez, D.T. & Naved, M. 2022. A review of using artificial intelligence and machine learning in food and agriculture industry. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). pp: 2215-2218. IEEE. http://dx.doi.org/10.1109/ICACITE53722.2022.9823427
- Pan, Y. 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4): 409-413. https://doi.org/10.1016/J.ENG.2016.04.018
- Papadimitriou, F. 2012. Artificial Intelligence in modelling the complexity of Mediterranean landscape transformations. Computers and Electronics in Agriculture, 81: 87-96. https://doi.org/10.1016/j.compag.2011.11.009
- Parasuraman, K., Anandan, U. & Anbarasan, A. 2021. IoT based smart agriculture automation in artificial intelligence. Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). pp: 420-427. https://doi.org/10.1109/ICICV50876.2021.9388578
- Pardey, P.G., Beddow, J.M., Hurley, T.M., Beatty, T.K. & Eidman, V.R. 2014. A bounds analysis of world food futures: Global agriculture through to 2050. Australian Journal of Agricultural and Resource Economics, 58(4): 571-589. https://doi.org/10.1111/1467-8489.12072
- Partel, V., Nunes, L., Stansly, P. & Ampatzidis, Y. 2019. Automated vision-based system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence. Computers and Electronics in Agriculture, 162: 328-336. http://dx.doi.org/10.1016/j.compag.2019.04.022
- Partel, V., Costa, L. & Ampatzidis, Y. 2021. Smart tree crop sprayer utilizing sensor fusion and artificial intelligence. Computers and Electronics in Agriculture, 191: 106556. https://doi.org/10.1016/j.compag.2021.106556
- Patil, V.C., Al-Gaadi, K.A., Biradar, D.P. & Rangaswamy, M. 2012. Internet of things (Iot) and cloud computing for agriculture: An overview. Proceedings of agro-informatics and precision agriculture (AIPA 2012), India, 292: 296.
- Patil, R.R. & Kumar, S. 2020. A bibliometric survey on the diagnosis of plant leaf diseases using artifificial intelligence. Library Philosophy and Practice, 1-26.
- Pawlak, K. & Kołodziejczak, M. 2020. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13): 5488. https://doi.org/10.3390/su12135488
- Pretty, J. 2008. Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491): 447-465. https://doi.org/10.1098/rstb.2007.2163
- Pretty, J. & Bharucha, Z.P. 2014. Sustainable intensification in agricultural systems. Annals of botany, 114(8): 1571-1596. https://doi.org/10.1093/aob/mcu205
- Qazi, A.M., Mahmood, S.H., Haleem, A., Bahl, S., Javaid, M. & Gopal, K. 2022. The impact of smart materials, digital twins (DTs) and Internet of things (IoT) in an industry 4.0 integrated automation industry. Materials Today: Proceedings, 62: 18-25. http://dx.doi.org/10.1016/j.matpr.2022.01.387
- Quinn, J., Frias-Martinez, V. & Subramanian, L. 2014. Computational sustainability and artificial intelligence in the developing world. AI Magazine, 35(3): 36-47. https://doi.org/10.1609/aimag.v35i3.2529
- Rajabzadeh, M. & Fatorachian, H. 2023. Modelling factors influencing IoT adoption: With a focus on agricultural logistics operations. Smart cities, 6(6): 3266-3296. https://doi.org/10.3390/smartcities6060145
- Raman, D.R., Saravanan, D., Parthiban, R., Palani, D.U., David, D.D.S., Usharani, S. & Jayakumar, D. 2021. A study on application of various artificial intelligence techniques on internet of things. European Journal of Molecular & Clinical Medicine, 7(9): 2531-2557.
- Rashid, A.B. & Kausik, A.K. 2024. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 100277. https://doi.org/10.1016/j.hybadv.2024.100277
- Rathore, N.S. 2021. Application of artificial intelligence in agriculture including horticulture. International Journal of Innovative Horticulture, 10(2): 138-141. http://dx.doi.org/10.5958/2582-2527.2021.00013.0
- Ray, P.P. 2017. Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9(4): 395-420. https://doi.org/10.3233/AIS-170440
- Reddy, K.S., Ahmad, S.S. & Tyagi, A.K. 2024. Artificial Intelligence and the Internet of Things-Enabled Smart Agriculture for the Modern Era. AI Applications for Business, Medical, and Agricultural Sustainability. pp: 68-99. IGI Global. http://dx.doi.org/10.4018/979-8-3693-5266-3.ch004
- Redhu, N.S., Thakur, Z., Yashveer, S. & Mor, P. 2022. Artificial intelligence: a way forward for agricultural sciences. In: Bioinformatics in agriculture. pp: 641-668. Academic Press. http://dx.doi.org/10.1016/B978-0-323-89778-5.00007-6
- Rehman, A., Farooq, M., Lee, D.J. & Siddique, K.H. 2022. Sustainable agricultural practices for food security and ecosystem services. Environmental Science and Pollution Research, 29(56): 84076-84095. https://doi.org/10.1007/s11356-022-23635-z
- Rey Benayas, J.M., Martins, A., Nicolau, J.M. & Schulz, J.J. 2007. Abandonment of agricultural land: an overview of drivers and consequences. CABI Reviews, pp: 14. http://dx.doi.org/10.1079/PAVSNNR20072057
- Rizvi, A.T., Haleem, A., Bahl, S. & Javaid, M. 2021. Artificial intelligence (AI) and its applications in Indian manufacturing: a review. In: Acharya, S.K., Mishra, D.P. (eds) Current Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-4795-3_76
- Rozhkova, A.V. & Rozhkov, S.E. 2022. Artificial intelligence technologies in the agro-industrial complex: opportunities and threats. IOP Conference Series: Earth and Environmental Science. 981(3): pp: 032013. IOP Publishing. http://dx.doi.org/10.1088/1755-1315/981/3/032013
- Ruiz-Real, J.L., Uribe-Toril, J., Torres Arriaza, J.A. & de Pablo Valenciano, J. 2020. A look at the past, present and future research trends of artificial intelligence in agriculture. Agronomy, 10(11): 1839. https://doi.org/10.3390/agronomy10111839
- Ruiz-Garcia, L. & Lunadei, L. 2011. The role of RFID in agriculture: Applications, limitations and challenges. Computers and electronics in agriculture, 79(1): 42-50. https://doi.org/10.1016/j.compag.2011.08.010
- Sadiku, M.N., Ashaolu, T.J. & Musa, S.M. 2020. Big data in agriculture. International journal of scientific advances, 1(1): 44-48. http://dx.doi.org/10.51542/ijscia.v1i1.9
- Sagan, V., Maimaitijiang, M., Paheding, S., Bhadra, S., Gosselin, N., Burnette, M. & Mockler, T. C. 2021. Data-driven artificial intelligence for calibration of hyperspectral big data. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-20. http://dx.doi.org/10.1109/TGRS.2021.3091409
- Saheb, T., Dehghani, M. & Saheb, T. 2022. Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis. Sustainable Computing: Informatics and Systems, 35: 100699. https://doi.org/10.1016/j.suscom.2022.100699
- Sahni, V., Srivastava, S. & Khan, R. 2021. Modelling techniques to improve the quality of food using artificial intelligence. Journal of Food Quality, 2021(1): 2140010. https://doi.org/10.1155/2021/2140010
- Salehin, I., Talha, I.M., Hasan, M.M., Dip, S.T., Saifuzzaman, M. & Moon, N.N. 2020. An artificial intelligence based rainfall prediction using LSTM and neural network. 2020 IEEE international women in engineering (WIE) conference on electrical and computer engineering (WIECON-ECE). pp: 5-8. http://dx.doi.org/10.1109/WIECON-ECE52138.2020.9398022
- Saleem, M.H., Potgieter, J. & Arif, K.M. 2021. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precision Agriculture, 22(6): 2053-2091. https://link.springer.com/article/10.1007/s11119-021-09806-x
- Sánchez, J.M., Rodríguez, J.P. & Espitia, H.E. 2020. Review of artificial intelligence applied in decision-making processes in agricultural public policy. Processes, 8(11): 1374. https://doi.org/10.3390/pr8111374
- Sane, T.U. & Sane, T.U. 2021. Artificial intelligence and deep learning applications in crop harvesting robots-A survey. International Conference on Electrical, Communication, and Computer Engineering (ICECCE). pp: 1-6. IEEE. http://dx.doi.org/10.1109/ICECCE52056.2021.9514232
- Santangeli, A., Chen, Y., Kluen, E., Chirumamilla, R., Tiainen, J. & Loehr, J. 2020. Integrating drone-borne thermal imaging with artificial intelligence to locate bird nests on agricultural land. Scientific reports, 10(1): 10993. https://doi.org/10.1038/s41598-020-67898-3
- Sarker, I.H. 2021. Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3): 160. https://doi.org/10.1007/s42979-021-00592-x
- Sarkar, M.R., Masud, S.R., Hossen, M.I. & Goh, M. 2022. A comprehensive study on the emerging effect of artificial intelligence in agriculture automation. IEEE 18th International Colloquium on Signal Processing & Applications (CSPA).pp: 419-424.
- Shah, F. & Wu, W. 2019. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11(5): 1485. https://doi.org/10.3390/su11051485
- Shaikh, T.A., Rasool, T. & Lone, F.R. 2022. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198: 107119. http://dx.doi.org/10.1016/j.compag.2022.107119
- Sharma, S., Gahlawat, V.K., Rahul, K., Mor, R.S. & Malik, M. 2021. Sustainable innovations in the food industry through artificial intelligence and big data analytics. Logistics, 5(4): 66. https://doi.org/10.3390/logistics5040066
- Sharma, A., Georgi, M., Tregubenko, M., Tselykh, A. & Tselykh, A. 2022a. Enabling smart agriculture by implementing artificial intelligence and embedded sensing. Computers & Industrial Engineering, 165: 107936. https://doi.org/10.1016/j.cie.2022.107936
- Sharma, P., Vimal, A., Vishvakarma, R., Kumar, P., porto de Souza Vandenberghe, L., Gaur, V.K. & Varjani, S. 2022c. Deciphering the blackbox of omics approaches and artificial intelligence in food waste transformation and mitigation. International Journal of Food Microbiology, 372: 109691. https://doi.org/10.1016/j.ijfoodmicro.2022.109691
- Sharma, R., Kumar, N. & Sharma, B.B. 2022d. Applications of artificial intelligence in smart agriculture: a review. Recent Innovations in Computing: Proceedings of ICRIC, 1: 135-142. http://dx.doi.org/10.1007/978-981-16-8248-3_11
- Sharma, V., Tripathi, A.K. & Mittal, H. 2022b. Technological revolutions in smart farming: Current trends, challenges & future directions. Computers and Electronics in Agriculture, 201: 107217. http://dx.doi.org/10.1016/j.compag.2022.107217
- Sharma, K. & Shivandu, S.K. 2024. Integrating artificial intelligence and internet of things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International, 100292. http://dx.doi.org/10.1016/j.sintl.2024.100292
- Shelake, S., Sutar, S., Salunkher, A., Patil, S., Patil, R., Patil, V. & Tamboli, T. 2021. Design and implementation of artificial intelligence powered agriculture multipurpose robot. International Journal of Research in Engineering, Science and Management, 4(8): 165-167. http://dx.doi.org/10.33130/AJCT.2021v07i01.032
- Sick, D. 2014. The new face of the countryside: Agriculture and generational livelihood strategies in rural Costa Rica. Rural Livelihoods, regional economies, and processes of change.pp: 36-57. Routledge.
- Sims, B. & Kienzle, J. 2017. Sustainable agricultural mechanization for smallholders: What is it and how can we implement it?. Agriculture, 7(6): 50. https://doi.org/10.3390/agriculture7060050
- Singh, K.K. 2018. An artificial intelligence and cloud based collaborative platform for plant disease identification, tracking and forecasting for farmers. IEEE international conference on cloud computing in emerging markets (CCEM). pp: 49-56. IEEE. http://dx.doi.org/10.1109/CCEM.2018.00016
- Singh, S.K., Rathore, S. & Park, J.H. 2020. Blockiotintelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Generation Computer Systems, 110: 721-743. https://doi.org/10.1016/j.future.2019.09.002
- Singh, P. & Kaur, A. 2022. A systematic review of artificial intelligence in agriculture. Deep learning for sustainable agriculture, 2022: 57-80. http://dx.doi.org/10.1016/B978-0-323-85214-2.00011-2
- Singh, S. & Jain, P. 2022. Applications of artificial intelligence for the development of sustainable agriculture. Agro-biodiversity and Agri-ecosystem Management. pp: 303-322. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0928-3_16
- Singhal, S., Ahuja, L. & Pathak, N. 2021. Impact of artificial intelligence and IOT in agriculture. 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). pp: 668-671. IEEE. http://dx.doi.org/10.1109/ICAC3N53548.2021.9725655
- Sishodia, R.P., Ray, R.L. & Singh, S.K. 2020. Applications of remote sensing in precision agriculture: A review. Remote sensing, 12(19): 3136. https://doi.org/10.3390/rs12193136
- Sivakumar, V.G., Baskar, V.V., Vadivel, M., Vimal, S.P. & Murugan, S. 2023. IoT and GIS Integration for Real-Time Monitoring of Soil Health and Nutrient Status. International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS).pp: 1265-1270. IEEE. http://dx.doi.org/10.1109/ICSSAS57918.2023.10331694
- Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P. & Smith, J. 2008. Greenhouse gas mitigation in agriculture. Philosophical transactions of the royal Society B: Biological Sciences, 363(1492): 789-813. https://doi.org/10.1098/rstb.2007.2184
- Smith, M.J. 2018. Getting value from artificial intelligence in agriculture. Animal Production Science, 60(1): 46-54. https://doi.org/10.1071/AN18522
- Songol, M., Awuor, F. & Maake, B. 2021. Adoption of artificial intelligence in agriculture in the developing nations: a review. Journal of Language, Technology & Entrepreneurship in Africa, 12(2): 208-229.
- Sparrow, R., Howard, M. & Degeling, C. 2021. Managing the risks of artificial intelligence in agriculture. NJAS: Impact in Agricultural and Life Sciences, 93(1): 172-196. https://doi.org/10.1080/27685241.2021.2008777
- Spiertz, J.H.J. 2009. Nitrogen, sustainable agriculture and food security: a review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., eds Sustainable Agriculture. Springer, Dordrecht. pp. 35-51. https://doi.org/10.1007/978-90-481-2666-8_39
- Steenwerth, K.L., Hodson, A.K., Bloom, A.J., Carter, M.R., Cattaneo, A., Chartres, C.J. & Jackson, L.E. 2014. Climate-smart agriculture global research agenda: scientific basis for action. Agriculture & Food Security, 3: 1-39. https://doi.org/10.1186/2048-7010-3-11
- Su, W.H. 2020. Crop plant signaling for real-time plant identification in smart farm: A systematic review and new concept in artificial intelligence for automated weed control. Artificial Intelligence in Agriculture, 4: 262-271. https://doi.org/10.1016/j.aiia.2020.11.001
- Subeesh, A. & Mehta, C.R. 2021. Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5: 278-291. https://doi.org/10.1016/j.aiia.2021.11.004
- Sujatha, K., Koti, M.S. & Supriya, R. 2021. Analysis of farm data using artificial intelligence. Innovative Data Communication Technologies and Application: Proceedings of ICIDCA 2020. pp: 203-211. Springer Singapore. http://dx.doi.org/10.1007/978-981-15-9651-3_18
- Sujawat, G.S. & Chouhan, J.S. 2021. Application of artificial intelligence in detection of diseases in plants: a survey. Turkish Journal of Computer and Mathematics Education, 12(3): 3301-3305. https://turcomat.org/index.php/turkbilmat/article/view/1581
- Taberkit, A.M., Kechida, A. & Bouguettaya, A. 2021. Algerian perspectives for UAV-based remote sensing technologies and artificial intelligence in precision agriculture. Proceedings of the 4th international conference on networking, information systems & security. pp: 1-9. https://doi.org/10.1145/3454127.3457637
- Tang, D., Feng, Y., Gong, D., Hao, W. & Cui, N. 2018. Evaluation of artificial intelligence models for actual crop evapotranspiration modeling in mulched and non-mulched maize croplands. Computers and electronics in agriculture, 152: 375-384. https://doi.org/10.1016/j.compag.2018.07.029
- Tantalaki, N., Souravlas, S. & Roumeliotis, M. 2019. Data-driven decision making in precision agriculture: The rise of big data in agricultural systems. Journal of agricultural & food information, 20(4): 344-380. http://dx.doi.org/10.1080/10496505.2019.1638264
- Thilakarathne, N.N., Bakar, M.S.A., Abas, P.E. & Yassin, H. 2023. Towards making the fields talks: A real-time cloud enabled IoT crop management platform for smart agriculture. Frontiers in Plant Science, 13: 1030168. https://doi.org/10.3389/fpls.2022.1030168
- Thornton, P.K. 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554): 2853-2867. https://doi.org/10.1098/rstb.2010.0134
- Titirmare, S., Margal, P.B., Gupta, S. & Kumar, D. 2024. AI-powered predictive analytics for crop yield optimization. Agriculture 4.0., pp: 89-110. CRC Press. http://dx.doi.org/10.1201/9781003570219-5
- Tiwari, P.S., Singh, K.K., Sahni, R.K. & Kumar, V. 2019. Farm mechanization–trends and policy for its promotion in India. The Indian Journal of Agricultural Sciences, 89(10): 1555-1562. http://dx.doi.org/10.56093/ijas.v89i10.94575
- Tzachor, A., Devare, M., King, B., Avin, S. & Ó hÉigeartaigh, S. 2022. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nature Machine Intelligence, 4(2): 104-109. https://doi.org/10.1038/s42256-022-00440-4
- Upadhyay, N. & Gupta, N. 2021. A survey on diseases detection for agriculture crops using artificial intelligence. 5th International conference on information systems and computer networks (ISCON). pp: 1-8. IEEE. http://dx.doi.org/10.1109/ISCON52037.2021.9702513
- Vaezi, M., Azari, A., Khosravirad, S.R., Shirvanimoghaddam, M., Azari, M.M., Chasaki, D. & Popovski, P. 2022. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G. IEEE Communications Surveys & Tutorials, 24(2): 1117-1174. https://doi.org/10.1109/COMST.2022.3151028
- Vangala, A., Das, A.K., Kumar, N. & Alazab, M. 2020. Smart secure sensing for IoT-based agriculture: Blockchain perspective. IEEE Sensors Journal, 21(16): 17591-17607. http://dx.doi.org/10.1109/JSEN.2020.3012294
- Velusamy, P., Rajendran, S., Mahendran, R.K., Naseer, S., Shafiq, M. & Choi, J.G. 2021. Unmanned Aerial Vehicles (UAV) in precision agriculture: Applications and challenges. Energies, 15(1): 217. https://doi.org/10.3390/en15010217
- Vincent, D.R., Deepa, N., Elavarasan, D., Srinivasan, K., Chauhdary, S.H. & Iwendi, C. 2019. Sensors driven AI-based agriculture recommendation model for assessing land suitability. Sensors, 19(17): 3667. https://doi.org/10.3390/s19173667
- Wang, H. 2019. The rationality evaluation of green agriculture industry structure in heilongjiang province based on artificial intelligence technology. 12th International Conference on Intelligent Computation Technology and Automation (ICICTA). pp: 719-723. IEEE. http://dx.doi.org/10.1109/ICICTA49267.2019.00157
- Weng, S., Zhu, W., Zhang, X., Yuan, H., Zheng, L., Zhao, J. & Han, P. 2019. Recent advances in Raman technology with applications in agriculture, food and biosystems: A review. Artificial Intelligence in Agriculture, 3: 1-10. https://doi.org/10.1016/j.aiia.2019.11.001
- Whittlesey, D. 1936. Major agricultural regions of the earth. Annals of the Association of American Geographers, 26(4): 199-240. https://doi.org/10.1080/00045603609357154
- Widianto, M.H., Ardimansyah, M.I., Pohan, H.I. & Hermanus, D.R. 2022. A systematic review of current trends in artificial intelligence for smart farming to enhance crop yield. Journal of Robotics and Control (JRC), 3(3): 269-278. http://dx.doi.org/10.18196/jrc.v3i3.13760
- Wilson, P. 2014. Farmer characteristics associated with improved and high farm business performance. International journal of agricultural management, 3(4): 1-9. http://dx.doi.org/10.5836/ijam/2014-04-02
- Yadav, V.S., Singh, A.R., Raut, R.D., Mangla, S.K., Luthra, S. & Kumar, A. 2022. Exploring the application of Industry 4.0 technologies in the agricultural food supply chain: A systematic literature review. Computers & Industrial Engineering, 169: 108304. http://dx.doi.org/10.1016/j.cie.2022.108304
- Yahya, N. & Yahya, N. 2018. Agricultural 4.0: Its implementation toward future sustainability. Green Urea: For Future Sustainability, 125-145. http://dx.doi.org/10.1007/978-981-10-7578-0_5
- Yaswanth Bhanu Murthy, M., Enaul Haq, S., Anne, K. & Sunil Babu, M. 2022. Integration of Artificial Intelligence and IoT on Agricultural Applications. Intelligent Systems for Social Good: Theory and Practice. pp: 29-38. Singapore: Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-19-0770-8_3
- Zahoor, I. & Mushtaq, A. 2023. Water pollution from agricultural activities: A critical global review. International Journal of Chemical and Biochemical Sciences, 23(1): 164-176.
- Zhang, L. & Wang, S. 2020. Input-output analysis of agricultural economic benefits based on big data and artificial intelligence. Journal of Physics: Conference Series. 1574(1): 012121. IOP Publishing. http://dx.doi.org/10.1088/1742-6596/1574/1/012121
- Zhang, J. 2020. Research on digital image processing and recognition technology of weeds in maize seedling stage based on artificial intelligence. Journal of Physics: Conference Series. 1648(4): 042058. IOP Publishing. https://doi.org/10.1088/1742-6596/1648/4/042058
