Have a personal or library account? Click to login
Modern Information Technology in Smart Sustainable Agriculture (SSA): A Review of Current Trends and Future Directions Cover

Modern Information Technology in Smart Sustainable Agriculture (SSA): A Review of Current Trends and Future Directions

Open Access
|Nov 2025

References

  1. Abualsaud, K., Elfouly, T.M., Khattab, T., Yaacoub, E., Ismail, L.S., Ahmed, M.H. & Guizani, M. 2018. A survey on mobile crowd-sensing and its applications in the IoT era. Ieee access, 7: 3855-3881. http://dx.doi.org/10.1109/ACCESS.2018.2885918
  2. Adenle, A.A., Azadi, H. & Manning, L. 2018. The era of sustainable agricultural development in Africa: Understanding the benefits and constraints. Food reviews international, 34(5): 411-433. http://dx.doi.org/10.1080/87559129.2017.1300913
  3. Adewusi, A.O., Asuzu, O.F., Olorunsogo, T., Iwuanyanwu, C., Adaga, E. & Daraojimba, D.O. 2024. AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews, 21(1): 2276-2285. https://doi.org/10.30574/wjarr.2024.21.1.0314
  4. Adeyemi, O., Grove, I., Peets, S. & Norton, T. 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability, 9(3): 353. https://doi.org/10.3390/su9030353
  5. Agrawal, J. & Arafat, M.Y. 2024. Transforming Farming: A Review of AI-Powered UAV Technologies in Precision Agriculture. Drones, 8(11): 2504-446X. https://doi.org/10.3390/drones8110664
  6. Aitkenhead, M.J., Dalgetty, I.A., Mullins, C.E., McDonald, A.J.S. & Strachan, N.J.C. 2003. Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and electronics in Agriculture, 39(3): 157-171. https://doi.org/10.1016/S0168-1699(03)00076-0
  7. Akbar, J.U.M., Kamarulzaman, S.F., Muzahid, A.J.M., Rahman, M.A. & Uddin, M. 2024. A comprehensive review on deep learning assisted computer vision techniques for smart greenhouse agriculture. IEEE Access, 12: 4485-4522. http://dx.doi.org/10.1109/ACCESS.2024.3349418
  8. Alam, M.A., Ahad, A., Zafar, S. & Tripathi, G. 2020. A neoteric smart and sustainable farming environment incorporating blockchain‐based artificial intelligence approach. Cryptocurrencies and Blockchain Technology Applications, 197-213. http://dx.doi.org/10.1002/9781119621201.ch11
  9. Al-bayati, J.S.H. & Üstündağ, B.B. 2020. Artificial intelligence in smart agriculture: Modified evolutionary optimization approach for plant disease identification. 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). pp: 1-6. IEEE. http://dx.doi.org/10.1109/ISMSIT50672.2020.9255323
  10. Ali, I., Sabir, S. & Ullah, Z. 2019. Internet of things security, device authentication and access control: a review. arXiv:1901.07309. https://doi.org/10.48550/arXiv.1901.07309
  11. Ali, A., Hussain, T., Tantashutikun, N., Hussain, N. & Cocetta, G. 2023. Application of smart techniques, internet of things and data mining for resource use efficient and sustainable crop production. Agriculture, 13(2): 397. https://doi.org/10.3390/agriculture13020397
  12. Alreshidi, E. 2019. Smart sustainable agriculture (SSA) solution underpinned by internet of things (IoT) and artificial intelligence (AI). arXiv:1906.03106. https://doi.org/10.48550/arXiv.1906.03106
  13. Altieri, M.A., Funes-Monzote, F.R. & Petersen, P. 2012. Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agronomy for sustainable development, 32(1): 1-13. https://doi.org/10.1007/s13593-011-0065-6
  14. AlZubi, A.A. & Galyna, K. 2023. Artificial intelligence and internet of things for sustainable farming and smart agriculture.Ieee Access, 11: 78686-78692. http://dx.doi.org/10.1109/ACCESS.2023.3298215
  15. Ammar, M., Haleem, A., Javaid, M., Bahl, S. & Nandan, D. 2022. Improving the performance of supply chain through industry 4.0 technologies. Advancement in Materials, Manufacturing and Energy Engineering, Vol. II: Select Proceedings of ICAMME 2021. pp: 197-209. Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-16-8341-1_16
  16. Arora, C., Kamat, A., Shanker, S. & Barve, A. 2022. Integrating agriculture and industry 4.0 under “agri-food 4.0” to analyze suitable technologies to overcome agronomical barriers. British food journal, 124(7): 2061-2095. https://doi.org/10.1108/bfj-08-2021-0934
  17. Ashima, R., Haleem, A., Bahl, S., Javaid, M., Mahla, S.K. & Singh, S. 2021. Automation and manufacturing of smart materials in Additive Manufacturing technologies using Internet of Things towards the adoption of Industry 4.0. Materials Today: Proceedings, 45: 5081-5088. https://doi.org/10.1016/j.matpr.2021.01.583
  18. Aslan, M.F., Durdu, A., Sabanci, K., Ropelewska, E. & Gültekin, S.S. 2022. A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3): 1047. https://doi.org/10.3390/app12031047
  19. Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A. & Aggoune, E.H.M. 2019. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE access, 7: 129551-129583. https://doi.org/10.1109/ACCESS.2019.2932609
  20. Balyan, S., Jangir, H., Tripathi, S. N., Tripathi, A., Jhang, T. & Pandey, P. 2024. Seeding a sustainable future: navigating the digital horizon of smart agriculture. Sustainability, 16(2): 475. https://doi.org/10.3390/su16020475
  21. Banthia, V. & Chaudaki, G. 2022. The study on use of artificial intelligence in agriculture. Journal of Advanced Research in Applied Artificial Intelligence and Neural Network, 5(2): 18-22.
  22. Barburiceanu, S., Meza, S., Orza, B., Malutan, R. & Terebes, R. 2021. Convolutional neural networks for texture feature extraction. Applications to leaf disease classification in precision agriculture. IEEE Access,9: 160085-160103. http://dx.doi.org/10.1109/ACCESS.2021.3131002
  23. Barenkamp, M. 2020. A new IoT gateway for artificial intelligence in agriculture. International Conference on Electrical, Communication, and Computer Engineering (ICECCE). pp: 1-5. IEEE. http://dx.doi.org/10.1109/ICECCE49384.2020.9179418
  24. Bellon-Maurel, V., Short, M.D., Roux, P., Schulz, M. & Peters, G.M. 2014. Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies–part I: concepts and technical basis. Journal of cleaner production, 69: 60-66. http://dx.doi.org/10.1016/j.jclepro.2014.09.095
  25. Ben Ayed, R. & Hanana, M. 2021. Artificial intelligence to improve the food and agriculture sector. Journal of Food Quality, 2021(1): 5584754. https://doi.org/10.1155/2021/5584754
  26. Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D. & Bochtis, D. 2021. Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11): 3758. https://doi.org/10.3390/s21113758
  27. Bestelmeyer, B.T., Marcillo, G., McCord, S.E., Mirsky, S., Moglen, G., Neven, L.G. & Wakie, T. 2020. Scaling up agricultural research with artificial intelligence. IT Professional, 22(3): 33-38. http://dx.doi.org/10.1109/MITP.2020.2986062
  28. Bhar, L.M., Ramasubramanian, V., Arora, A., Marwaha, S. & Parsad, R. 2019. Era of Artificial Intelligence prospects for Indian agriculture. Indian Farming, 69(3).
  29. Bharti, V.K. & Bhan, S. 2018. Impact of artificial intelligence for agricultural sustainability. Journal of Soil and Water Conservation, 17(4): 393-399.
  30. Bhat, S.A. & Huang, N.F. 2021. Big data and AI revolution in precision agriculture: Survey and challenges. Ieee Access, 9: 110209-110222. https://doi.org/10.1109/ACCESS.2021.3102227
  31. Bouwer, H. 2000. Integrated water management: emerging issues and challenges. Agricultural water management, 45(3): 217-228. https://doi.org/10.1016/S0378-3774(00)00092-5
  32. Castro-Maldonado, J.J., Patiño-Murillo, J.A., Florian-Villa, A.E. & Guadrón-Guerrero, O.E. 2018. Application of computer vision and low-cost artificial intelligence for the identification of phytopathogenic factors in the agro-industry sector. Journal of Physics: Conference Series, 1126(1): 012022. IOP Publishing. http://dx.doi.org/10.1088/1742-6596/1126/1/012022
  33. Chandra, V., Hareendran, A. & Albaaji, G.F. Precision farming for sustainability: An agricultural intelligence model. Computers and Electronics in Agriculture, 226: 109386. https://doi.org/10.1016/j.compag.2024.109386
  34. Channe, H., Kothari, S. & Kadam, D. 2015. Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing & big-data analysis. International Journal of Computer Technology and Applications, 6(3): 374-382.
  35. Charania, I. & Li, X. 2020. Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet of Things, 9: 100142. https://doi.org/10.1016/j.iot.2019.100142
  36. Chartres, C.J. & Noble, A. 2015. Sustainable intensification: overcoming land and water constraints on food production. Food security, 7: 235-245. http://dx.doi.org/10.1007/s12571-015-0425-1
  37. Chataut, R., Phoummalayvane, A. & Akl, R. 2023. Unleashing the power of IoT: A comprehensive review of IoT applications and future prospects in healthcare, agriculture, smart homes, smart cities, and industry 4.0. Sensors, 23(16): 7194. https://doi.org/10.3390/s23167194
  38. Chauhan, U., Sharma, D., Saleem, S., Kumar, M. & Singh, S.P. 2022. Artificial intelligence-based sustainable agricultural practices. Artificial Intelligence Applications in Agriculture and Food Quality Improvement.pp: 1-16. IGI Global. https://doi.org/10.4018/978-1-6684-5141-0.ch001
  39. Cheng, C., Fu, J., Su, H. & Ren, L. 2023. Recent advancements in agriculture robots: Benefits and challenges. Machines, 11(1): 48. https://doi.org/10.3390/machines11010048
  40. Chougule, M.A. & Mashalkar, A.S. 2022. A comprehensive review of agriculture irrigation using artificial intelligence for crop production. Computational Intelligence in Manufacturing, 187-200. http://dx.doi.org/10.1016/B978-0-323-91854-1.00002-9
  41. Chukkapalli, S.S.L., Mittal, S., Gupta, M., Abdelsalam, M., Joshi, A., Sandhu, R. & Joshi, K. 2020. Ontologies and artificial intelligence systems for the cooperative smart farming ecosystem. Ieee Access, 8: 164045-164064. https://doi.org/10.1109/ACCESS.2020.3022763
  42. Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarriá, D. & Menesatti, P. 2013. A review on agri-food supply chain traceability by means of RFID technology. Food and bioprocess technology, 6: 353-366. https://doi.org/10.1007/s11947-012-0958-7
  43. Costa, L., Archer, L., Ampatzidis, Y., Casteluci, L., Caurin, G.A. & Albrecht, U. 2021. Determining leaf stomatal properties in citrus trees utilizing machine vision and artificial intelligence. Precision Agriculture, 22: 1107-1119. https://link.springer.com/article/10.1007/s11119-020-09771-x
  44. Costa, F., Frecassetti, S., Rossini, M. & Portioli-Staudacher, A. 2023. Industry 4.0 digital technologies enhancing sustainability: Applications and barriers from the agricultural industry in an emerging economy. Journal of Cleaner Production, 408: 137208. https://doi.org/10.1016/j.jclepro.2023.137208
  45. Crane-Droesch, A. 2018. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters, 13(11): 114003. https://doi.org/10.1088/1748-9326/aae159
  46. Dahbur, K., Mohammad, B. & Tarakji, A.B. 2011. A survey of risks, threats and vulnerabilities in cloud computing. Proceedings of the 2011 International conference on intelligent semantic Web-services and applications. pp: 1-6. https://doi.org/10.1145/1980822.1980834
  47. Dakir, A., Barramou, F. & Alami, O.B. 2022. Opportunities for artificial intelligence in precision agriculture using satellite remote sensing. Geospatial Intelligence: Applications and Future Trends, 107-117. http://dx.doi.org/10.1007/978-3-030-80458-9_8
  48. Daoliang, L.I. & Chang, L.I.U. 2020. Recent advances and future outlook for artificial intelligence in aquaculture. Smart agriculture, 2(3): 1. https://doi.org/10.12133/j.smartag.2020.2.3.202004-SA007
  49. Das, A., Senapati, M. & John, J. 2009. Impact of agricultural credit on agriculture production: an empirical analysis in India. Reserve Bank of India Occasional Papers, 30(2): 75-107.
  50. Dayıoğlu, M.A. & Turker, U. 2021. Digital transformation for sustainable future-agriculture 4.0: A review. Journal of Agricultural Sciences, 27(4): 373-399. http://dx.doi.org/10.15832/ankutbd.986431
  51. De Abreu, C.L. & van Deventer, J.P. 2022. The application of artificial intelligence (AI) and internet of things (IoT) in agriculture: A systematic literature review. Southern African Conference for Artificial Intelligence Research. pp: 32-46. Springer, Cham. https://doi.org/10.1007/978-3-030-95070-5_3
  52. Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S. & Kaliaperumal, R. 2022. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10): 1745. https://doi.org/10.3390/agriculture12101745
  53. Dhanya, V.G., Subeesh, A., Kushwaha, N.L., Vishwakarma, D.K., Kumar, T.N., Ritika, G. & Singh, A.N. 2022. Deep learning based computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture, 6: 211-229. https://doi.org/10.1016/j.aiia.2022.09.007
  54. Domingues, T., Brandão, T. & Ferreira, J.C. 2022. Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey. Agriculture, 12(9): 1350. https://doi.org/10.3390/agriculture12091350
  55. Dora, M., Kumar, A., Mangla, S.K., Pant, A. & Kamal, M.M. 2022. Critical success factors influencing artificial intelligence adoption in food supply chains. International Journal of Production Research, 60(14): 4621-4640. http://dx.doi.org/10.1080/00207543.2021.1959665
  56. Duckett, T., Pearson, S., Blackmore, S., Grieve, B., Chen, W.H., Cielniak, G. & Yang, G.Z. 2018. Agricultural robotics: the future of robotic agriculture. arXiv, 1806.06762. https://doi.org/10.48550/arXiv.1806.06762
  57. Elbasi, E., Mostafa, N., AlArnaout, Z., Zreikat, A.I., Cina, E., Varghese, G. & Zaki, C. 2022. Artificial intelligence technology in the agricultural sector: A systematic literature review. IEEE access, 11: 171-202. https://doi.org/10.1109/ACCESS.2022.3232485
  58. Elbasi, E., Zaki, C., Topcu, A.E., Abdelbaki, W., Zreikat, A.I., Cina, E. & Saker, L. 2023. Crop prediction model using machine learning algorithms. Applied Sciences, 13(16): 9288. https://doi.org/10.3390/app13169288
  59. Elijah, O., Rahman, T.A., Orikumhi, I., Leow, C.Y. & Hindia, M.N. 2018. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet of things Journal, 5(5): 3758-3773. https://doi.org/10.1109/JIOT.2018.2844296
  60. El-Ramady, H.R. 2014. Integrated nutrient management and postharvest of crops. Sustainable Agriculture Reviews: 13: 163-274. https://doi.org/10.1007/978-3-319-00915-5_8
  61. Ennouri, K., Smaoui, S., Gharbi, Y., Cheffi, M., Ben Braiek, O., Ennouri, M. & Triki, M. A. 2021. Usage of artificial intelligence and remote sensing as efficient devices to increase agricultural system yields. Journal of Food Quality, 2021(1): 6242288. https://doi.org/10.1155/2021/6242288
  62. Escamilla-García, A., Soto-Zarazúa, G.M., Toledano-Ayala, M., Rivas-Araiza, E. & Gastélum-Barrios, A. 2020. Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Applied Sciences, 10(11): 3835. https://doi.org/10.3390/app10113835
  63. Espinel, R., Herrera-Franco, G., Rivadeneira García, J.L. & Escandón-Panchana, P. 2024. Artificial intelligence in agricultural mapping: A review. Agriculture, 14(7): 1071. https://doi.org/10.3390/agriculture14071071
  64. Fadziso, T. 2019. Implementation of artificial intelligence in agriculture: a review for CMS optimization. Malaysian Journal of Medical and Biological Research, 6(2): 127-134.
  65. Fageria, N.K. 2002. Soil quality vs. environmentally-based agricultural management practices. Communications in soil science and plant analysis, 33(13-14): 2301-2329. https://doi.org/10.1081/CSS-120005764
  66. Farooq, M.S., Javid, R., Riaz, S. & Atal, Z. 2022. IoT based smart greenhouse framework and control strategies for sustainable agriculture. IEEE Access, 10: 99394-99420. https://doi.org/10.1109/ACCESS.2022.3204066
  67. Fazal, N., Haleem, A., Bahl, S., Javaid, M. & Nandan, D. 2022. Digital management systems in manufacturing using industry 5.0 technologies. Advancement in Materials, Manufacturing and Energy Engineering, Vol. II: Select Proceedings of ICAMME 2021. pp: 221-234. Singapore: Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-16-8341-1_18
  68. Fennimore, S.A., Slaughter, D.C., Siemens, M.C., Leon, R.G. & Saber, M.N. 2016. Technology for automation of weed control in specialty crops. Weed Technology, 30(4): 823-837. http://dx.doi.org/10.1614/WT-D-16-00070.1
  69. Fess, T.L., Kotcon, J.B. & Benedito, V.A. 2011. Crop breeding for low input agriculture: a sustainable response to feed a growing world population. Sustainability, 3(10): 1742-1772. https://doi.org/10.3390/su3101742
  70. Forcén-Muñoz, M., Pavón-Pulido, N., López-Riquelme, J.A., Temnani-Rajjaf, A., Berríos, P., Morais, R. & Pérez-Pastor, A. 2021. Irriman platform: Enhancing farming sustainability through cloud computing techniques for irrigation management. Sensors, 22(1): 228. https://doi.org/10.3390/s22010228
  71. Fuentes, S., Gonzalez Viejo, C., Cullen, B., Tongson, E., Chauhan, S.S. & Dunshea, F.R. 2020. Artificial intelligence applied to a robotic dairy farm to model milk productivity and quality based on cow data and daily environmental parameters. Sensors, 20(10): 2975. https://doi.org/10.3390/s20102975
  72. Fuentes-Peñailillo, F., Gutter, K., Vega, R. & Silva, G. C. 2024. Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management. Journal of Sensor and Actuator Networks,13(4): 39. https://doi.org/10.3390/jsan13040039
  73. Ganeshkumar, C., Jena, S.K., Sivakumar, A. & Nambirajan, T. 2023. Artificial intelligence in agricultural value chain: review and future directions. Journal of Agribusiness in Developing and Emerging Economies, 13(3): 379-398. http://dx.doi.org/10.1108/JADEE-07-2020-0140
  74. Galaz, V., Centeno, M.A., Callahan, P.W., Causevic, A., Patterson, T., Brass, I. & Levy, K. 2021. Artificial intelligence, systemic risks, and sustainability. Technology in society, 67: 101741. https://doi.org/10.1016/j.techsoc.2021.101741
  75. Garrett, K.A., Bebber, D.P., Etherton, B.A., Gold, K.M., Plex Sulá, A.I. & Selvaraj, M.G. 2022. Climate change effects on pathogen emergence: Artificial intelligence to translate big data for mitigation. Annual Review of Phytopathology, 60(1): 357-378. https://doi.org/10.1146/annurev-phyto-021021-042636
  76. Getahun, S., Kefale, H. & Gelaye, Y. 2024. Application of precision agriculture technologies for sustainable crop production and environmental sustainability: A systematic review. The Scientific World Journal, 2024(1): 2126734. https://doi.org/10.1155/2024/2126734
  77. Ghatrehsamani, S., Jha, G., Dutta, W., Molaei, F., Nazrul, F., Fortin, M. & Neupane, J. 2023. Artificial intelligence tools and techniques to combat herbicide resistant weeds - a review. Sustainability, 15(3): 1843. https://doi.org/10.3390/su15031843
  78. Ghosh, S. & Singh, A. 2020. The scope of Artificial Intelligence in mankind: A detailed review. Journal of Physics: Conference Series. 1531 (1): 012045. IOP Publishing. https://doi.org/10.1088/1742-6596/1531/1/012045
  79. Gill, S.S., Tuli, S., Xu, M., Singh, I., Singh, K.V., Lindsay, D. & Garraghan, P. 2019. Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges. Internet of Things, 8: 100118. https://doi.org/10.1016/j.iot.2019.100118
  80. Giller, K.E., Delaune, T., Silva, J.V., Descheemaeker, K., Van De Ven, G., Schut, A.G. & van Ittersum, M.K. 2021. The future of farming: Who will produce our food?. Food Security, 13(5): 1073-1099. https://doi.org/10.1007/s12571-021-01184-6
  81. Giri, A., Saxena, D.R.R., Saini, P. & Rawte, D.S. 2020. Role of artificial intelligence in advancement of agriculture. International Journal of Chemical Studies, 8(2): 375-380. http://dx.doi.org/10.22271/chemi.2020.v8.i2f.8796
  82. Goldstein, A., Fink, L. & Ravid, G. 2022. A cloud-based framework for agricultural data integration: A top-down-bottom-up approach. IEEE Access, 10: 88527-88537. http://dx.doi.org/10.1109/ACCESS.2022.3198099
  83. Hadidi, A., Saba, D. & Sahli, Y. 2021. The role of artificial neuron networks in intelligent agriculture (case study: greenhouse). Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, 45-67. http://dx.doi.org/10.1007/978-3-030-51920-9_4
  84. Hassan, M.U., Ullah, M. & Iqbal, J. 2016. Towards autonomy in agriculture: Design and prototyping of a robotic vehicle with seed selector. 2nd International Conference on Robotics and Artificial Intelligence (ICRAI). pp: 37-44. IEEE. http://dx.doi.org/10.1109/ICRAI.2016.7791225
  85. Hemming, S., de Zwart, F., Elings, A., Righini, I. & Petropoulou, A. 2019. Remote control of greenhouse vegetable production with artificial intelligence—greenhouse climate, irrigation, and crop production. Sensors, 19(8): 1807. https://doi.org/10.3390/s19081807
  86. Herrero, M., Thornton, P.K., Gerber, P. & Reid, R.S. 2009. Livestock, livelihoods and the environment: understanding the trade-offs. Current Opinion in Environmental Sustainability, 1(2): 111-120. https://doi.org/10.1016/j.cosust.2009.10.003
  87. Hou, R. & Wen, C. 2021. Sustainable tea garden ecotourism based on the multifunctionality of organic agriculture based on artificial intelligence technology. Mobile Information Systems, 2021(1): 8696490. https://doi.org/10.1155/2021/8696490
  88. Hyunjin, C. 2020. A study on the change of farm using artificial intelligence focused on smart farm in Korea. Journal of Physics: Conference Series. 1642 (1): 012025. IOP Publishing. http://dx.doi.org/10.1088/1742-6596/1642/1/012025
  89. Hyunjin, C. & Sainan, H. 2021. A study on the design and operation method of plant factory using artificial intelligence. Nanotechnology for Environmental Engineering, 6(3): 41. https://link.springer.com/article/10.1007/s41204-021-00136-x
  90. Ikegwu, A.C., Nweke, H.F., Anikwe, C.V., Alo, U.R. & Okonkwo, O.R. 2022. Big data analytics for data-driven industry: a review of data sources, tools, challenges, solutions, and research directions. Cluster Computing, 25(5): 3343-3387. http://dx.doi.org/10.1007/s10586-022-03568-5
  91. Jaber, M.M., Ali, M.H., Abd, S.K., Jassim, M.M., Alkhayyat, A., Aziz, H.W. & Alkhuwaylidee, A.R. 2022. Predicting climate factors based on big data analytics based agricultural disaster management. Physics and Chemistry of the Earth, Parts A/B/C, 128: 103243. http://dx.doi.org/10.1016/j.pce.2022.103243
  92. Javaid, M., Haleem, A., Khan, I. H. & Suman, R. 2023. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1): 15-30. https://doi.org/10.1016/j.aac.2022.10.001
  93. Jayalakshmi, M. & Gomathi, V. 2020. Sensor-cloud based precision agriculture approach for intelligent water management. International Journal of Plant Production, 14(2): 177-186. https://ui.adsabs.harvard.edu/link_gateway/2020IJPP...14..177J/doi:10.1007/s42106-019-00077-1
  94. Jha, K., Doshi, A., Patel, P. & Shah, M. 2019. A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2: 1-12. https://doi.org/10.1016/j.aiia.2019.05.004
  95. Jiayu, Z., Shiwei, X., Zhemin, L., Wei, C. & Dongjie, W. 2015. Application of intelligence information fusion technology in agriculture monitoring and early-warning research. International Conference on Control, Automation and Robotics. pp: 114-117. IEEE. http://dx.doi.org/10.1109/ICCAR.2015.7166013
  96. Joseph, R.B., Lakshmi, M.B., Suresh, S. & Sunder, R. 2020. Innovative analysis of precision farming techniques with artificial intelligence. 2nd international conference on innovative mechanisms for industry applications (ICIMIA). pp: 353-358. IEEE. http://dx.doi.org/10.1109/ICIMIA48430.2020.9074937
  97. Joseph, A., Chandra, J. & Siddharthan, S. 2021. Genome analysis for precision agriculture using artificial intelligence: A survey. In: Jat, D.S., Shukla, S., Unal, A., Mishra, D.K. (eds) Data Science and Security. Lecture Notes in Networks and Systems, vol 132. Springer, Singapore.pp: 221-226. Springer Singapore. http://dx.doi.org/10.1007/978-981-15-5309-7_23
  98. Kakani, V., Nguyen, V.H., Kumar, B.P., Kim, H. & Pasupuleti, V.R. 2020. A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 2: 100033. https://doi.org/10.1016/j.jafr.2020.100033
  99. Kalyani, Y. & Collier, R. 2021. A systematic survey on the role of cloud, fog, and edge computing combination in smart agriculture. Sensors, 21(17): 5922. https://doi.org/10.3390/s21175922
  100. Kamilaris, A. & Prenafeta-Boldú, F.X. 2018. A review of the use of convolutional neural networks in agriculture. The Journal of Agricultural Science, 156(3): 312-322. https://doi.org/10.1017/S0021859618000436
  101. Kashyap, B. & Kumar, R. 2021. Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access, 9: 14095-14121. http://dx.doi.org/10.1109/ACCESS.2021.3052478
  102. Katyayan, A., Mashelkar, S., DC, A.G. & Morajkar, S. 2021. Design of smart agriculture systems using artificial intelligence and big data analytics. 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). pp: 592-595. IEEE. http://dx.doi.org/10.1109/ICAC3N53548.2021.9725672
  103. Kaur, S. 2019. Artificial intelligence and internet of things in agriculture–A survey. Think India Journal, 22(30): 1410-1416.
  104. Kawai, T. & Mineno, H. 2020. Evaluation environment using edge computing for artificial intelligence-based irrigation system. 16th International Conference on Mobility, Sensing and Networking (MSN). pp: 214-219. IEEE. http://dx.doi.org/10.1109/MSN50589.2020.00046
  105. Kearney, J. 2010. Food consumption trends and drivers. Philosophical transactions of the royal society B: biological sciences, 365(1554): 2793-2807. https://doi.org/10.1098/rstb.2010.0149
  106. Khalifeh, A., AlQammaz, A., Darabkh, K.A., Sha’ar, B.A. & Ghatasheh, O. 2021. A framework for artificial intelligence assisted smart agriculture utilizing lorawan wireless sensor networks. Soft Computing Applications: Proceedings of the 8th International Workshop Soft Computing Applications (SOFA 2018).8 (II): pp: 408-421. Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-52190-5_29
  107. Khan, N., Ray, R.L., Sargani, G.R., Ihtisham, M., Khayyam, M. & Ismail, S. 2021. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability, 13(9): 4883. https://doi.org/10.3390/su13094883
  108. Kim, W.S., Lee, W.S. & Kim, Y.J. 2020. A review of the applications of the internet of things (IoT) for agricultural automation. Journal of Biosystems Engineering, 45: 385-400. https://doi.org/10.1007/s42853-020-00078-3
  109. Klerkx, L., Jakku, E. & Labarthe, P. 2019. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wageningen journal of life sciences, 90: 100315. https://doi.org/10.1016/j.njas.2019.100315
  110. Klerkx, L. & Rose, D. 2020. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Global Food Security, 24: 100347. https://doi.org/10.1016/j.gfs.2019.100347
  111. Kodama, T. & Hata, Y. 2018. Development of classification system of rice disease using artificial intelligence. IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp: 3699-3702. IEEE. http://dx.doi.org/10.1109/SMC.2018.00626
  112. Kowalska, A. & Ashraf, H. 2023. Advances in deep learning algorithms for agricultural monitoring and management. Applied Research in Artificial Intelligence and Cloud Computing, 6(1): 68-88.
  113. Kshetri, N. 2020. Artificial Intelligence in Developing Countries. IT Professional, 22(4): 63-68. https://doi.org/10.1109/MITP.2019.2951851
  114. Kujawa, S. & Niedbała, G. 2021. Artificial neural networks in agriculture. Agriculture, 11(6): 497. http://dx.doi.org/10.3390/agriculture11060497
  115. Kumar, I., Rawat, J., Mohd, N. & Husain, S. 2021a. Opportunities of artificial intelligence and machine learning in the food industry. Journal of Food Quality, 2021(1): 4535567. https://doi.org/10.1155/2021/4535567
  116. Kumar, S., Patil, R.R., Kumawat, V., Rai, Y., Krishnan, N. & Singh, S. 2021b. A bibliometric analysis of plant disease classification with artificial intelligence using convolutional neural network. Library Philosophy and Practice, 1-14.
  117. Kumar, V., Sharma, K.V., Kedam, N., Patel, A., Kate, T.R. & Rathnayake, U. 2024. A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agricultural Technology, 100487. https://doi.org/10.1016/j.atech.2024.100487
  118. Kun, W. 2020. Design of multi-parameter monitoring system for intelligent agriculture greenhouse based on artificial intelligence. Multimedia Technology and Enhanced Learning: Second EAI International Conference, ICMTEL 2020, Leicester, UK, April 10-11, 2020, Proceedings, Part I 2. pp: 269-280. Springer International Publishing. https://doi.org/10.1007/978-3-030-51100-5_24
  119. Kushkhova, B.A., Gazaeva, M.S., Gyatov, A.V., Ivanova, Z.M. & Eneeva, M.N. 2019. Artificial intelligence in agriculture of Kabardino-Balkaria: current state, problems and prospects. IOP Conference Series: Earth and Environmental Science. 315(2): 022013. IOP Publishing. http://dx.doi.org/10.1088/1755-1315/315/2/022013
  120. Lakhiar, I.A., Yan, H., Zhang, C., Wang, G., He, B., Hao, B. & Rakibuzzaman, M. 2024. A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture, 14(7): 1141. https://doi.org/10.3390/agriculture14071141
  121. Lakshmi, V. & Corbett, J. 2020. How artificial intelligence improves agricultural productivity and sustainability: A global thematic analysis. Proceedings of the 53rd Hawaii International Conference on System Sciences. 5202-5211. https://doi.org/10.24251/HICSS.2020.639
  122. Lal, R. 2006. Managing soils for feeding a global population of 10 billion. Journal of the Science of Food and Agriculture, 86(14): 2273-2284. http://dx.doi.org/10.1002/jsfa.2626
  123. Leal Filho, W., Wall, T., Mucova, S.A.R., Nagy, G.J., Balogun, A.L., Luetz, J.M. & Gandhi, O. 2022. Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change, 180: 121662. https://doi.org/10.1016/j.techfore.2022.121662
  124. Lee, D.R. 2005. Agricultural sustainability and technology adoption: Issues and policies for developing countries. American journal of agricultural economics, 87(5): 1325-1334. https://doi.org/10.1111/j.1467-8276.2005.00826.x
  125. Liliane, T.N. & Charles, M.S. 2020. Factors affecting yield of crops. Agronomy-climate change & food security, 9: 9-24. https://doi.org/10.5772/intechopen.90672
  126. Liu, Y., Ma, X., Shu, L., Hancke, G.P. & Abu-Mahfouz, A.M. 2020. From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges. IEEE transactions on industrial informatics, 17(6): 4322-4334. https://doi.org/10.1109/TII.2020.3003910
  127. Liu, J., Xiang, J., Jin, Y., Liu, R., Yan, J. & Wang, L. 2021a. Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey. Remote Sensing, 13(21): 4387. https://doi.org/10.3390/rs13214387
  128. Liu, Y., Pu, H. & Sun, D. W. 2021b. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends in Food Science & Technology, 113: 193-204. https://doi.org/10.1016/j.tifs.2021.04.042
  129. Lowe, M., Qin, R. & Mao, X. 2022. A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water, 14(9): 1384. https://doi.org/10.3390/w14091384
  130. Lowenberg-DeBoer, J., Huang, I. Y., Grigoriadis, V. & Blackmore, S. 2020. Economics of robots and automation in field crop production. Precision Agriculture, 21(2): 278-299. https://doi.org/10.1007/s11119-019-09667-5
  131. Lu, Y. 2019. Artificial intelligence: a survey on evolution, models, applications and future trends. Journal of Management Analytics, 6(1): 1-29. https://doi.org/10.1080/23270012.2019.1570365
  132. Maraveas, C., Loukatos, D., Bartzanas, T. & Arvanitis, K. G. 2021. Applications of artificial intelligence in fire safety of agricultural structures. Applied Sciences, 11(16): 7716. https://doi.org/10.3390/app11167716
  133. Marcu, I.M., Suciu, G., Balaceanu, C.M. & Banaru, A. 2019. IoT based system for smart agriculture. 11th international conference on electronics, computers and artificial intelligence (ECAI). pp: 1-4). IEEE. http://dx.doi.org/10.1109/ECAI46879.2019.9041952
  134. Marinoudi, V., Sørensen, C.G., Pearson, S. & Bochtis, D. 2019. Robotics and labour in agriculture. A context consideration. Biosystems Engineering, 184: 111-121. https://doi.org/10.1016/j.biosystemseng.2019.06.013
  135. Mase, A.S. & Prokopy, L.S. 2014. Unrealized potential: A review of perceptions and use of weather and climate information in agricultural decision making. Weather, Climate, and Society, 6(1): 47-61. https://doi.org/10.1175/WCAS-D-12-00062.1
  136. Mathur, P. 2024. Cloud computing infrastructure, platforms, and software for scientific research. High Performance Computing in Biomimetics: Modeling, Architecture and Applications, 89-127. http://dx.doi.org/10.1007/978-981-97-1017-1_4
  137. Mir, H., Zaraatgari, R. & Sotoudeh, R. 2021. Improving the food and agriculture sector tehran stock exchange by using artificial intelligence. Agricultural Marketing and Commercialization, 5(2): 90-114.
  138. Mishra, H. & Mishra, D. 2023. Artificial intelligence and machine learning in agriculture: Transforming farming systems. Research Trends in Agriculture Science, 1: 1-16.
  139. Mishra, S., Sachan, R. & Rajpal, D. 2020. Deep convolutional neural network based detection system for real-time corn plant disease recognition. Procedia Computer Science, 167: 2003-2010. https://doi.org/10.1016/j.procs.2020.03.236
  140. Misra, N.N., Dixit, Y., Al-Mallahi, A., Bhullar, M.S., Upadhyay, R. & Martynenko, A. 2020. IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of things Journal, 9(9): 6305-6324. https://doi.org/10.1109/JIOT.2020.2998584
  141. Mohamed, E.S., Belal, A.A., Abd-Elmabod, S.K., El-Shirbeny, M.A., Gad, A. & Zahran, M.B. 2021. Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3): 971-981. http://dx.doi.org/10.1016/j.ejrs.2021.08.007
  142. Mohapatra, H. & Rath, A.K. 2022. IoE based framework for smart agriculture: Networking among all agricultural attributes. Journal of ambient intelligence and humanized computing, 13(1): 407-424. https://link.springer.com/article/10.1007/s12652-021-02908-4
  143. Mohyuddin, G., Khan, M.A., Haseeb, A., Mahpara, S., Waseem, M. & Saleh, A.M. 2024. Evaluation of Machine Learning approaches for precision farming in Smart Agriculture System - A comprehensive Review. IEEE Access. http://dx.doi.org/10.1109/ACCESS.2024.3390581
  144. Monarca, D., Rossi, P., Alemanno, R., Cossio, F., Nepa, P., Motroni, A. & Cecchini, M. 2022. Autonomous vehicles management in agriculture with Bluetooth low energy (BLE) and passive radio frequency identification (RFID) for Obstacle Avoidance. Sustainability, 14(15): 9393. https://doi.org/10.3390/su14159393
  145. Monteiro, A., Santos, S. & Gonçalves, P. 2021. Precision agriculture for crop and livestock farming—Brief review. Animals, 11(8): 2345. https://doi.org/10.3390/ani11082345
  146. Monteiro, J. & Barata, J. 2021. Artificial intelligence in extended agri-food supply chain: A short review based on bibliometric analysis. Procedia Computer Science, 192: 3020-3029. https://doi.org/10.1016/j.procs.2021.09.074
  147. Moura, J. & Hutchison, D. 2016. Review and analysis of networking challenges in cloud computing. Journal of Network and Computer Applications, 60: 113-129. https://doi.org/10.1016/j.jnca.2015.11.015
  148. Mumtaz, N. & Nazar, M. 2022. Artificial intelligence robotics in agriculture: See & spray. Journal of Intelligent Pervasive and Soft Computing, 1(01): 21-24.
  149. Mutanga, O., Dube, T. & Galal, O. 2017. Remote sensing of crop health for food security in Africa: Potentials and constraints. Remote Sensing Applications: Society and Environment, 8: 231-239. https://doi.org/10.1016/j.rsase.2017.10.004
  150. Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G., Humber, M.L., Justice, C.J. & Sanchez, A. 2021. A review of satellite-based global agricultural monitoring systems available for Africa. Global Food Security, 29: 100543. https://ui.adsabs.harvard.edu/link_gateway/2021GlFS...2900543N/doi:10.1016/j.gfs.2021.100543
  151. Ngulube, P. 2025. Leveraging information and communication technologies for sustainable agriculture and environmental protection among smallholder farmers in tropical Africa. Discover Environment, 3(1): 1-17. https://doi.org/10.1007/s44274-025-00190-1
  152. Obaideen, K., Yousef, B.A., AlMallahi, M.N., Tan, Y.C., Mahmoud, M., Jaber, H. & Ramadan, M. 2022. An overview of smart irrigation systems using IoT. Energy Nexus, 7: 100124. https://doi.org/10.1016/j.nexus.2022.100124
  153. Obaisi, A.I., Adegbeye, M.J., Elghandour, M.M., Barbabosa-Pliego, A. & Salem, A.Z.M. 2022. Natural resource management and sustainable agriculture. In: Handbook of climate change mitigation and adaptation. pp: 2577-2613. Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-72579-2_133
  154. Ogidi, O.I. & Akpan, U.M. 2022. Aquatic biodiversity loss: impacts of pollution and anthropogenic activities and strategies for conservation. In: Biodiversity in Africa: potentials, threats and conservation. pp: 421-448. Singapore: Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-19-3326-4_16
  155. O’Grady, M.J., Langton, D. & O’Hare, G.M.P. 2019. Edge computing: A tractable model for smart agriculture? Artificial Intelligence in Agriculture, 3: 42-51. https://doi.org/10.1016/j.aiia.2019.12.001
  156. Orchi, H., Sadik, M. & Khaldoun, M. 2022. On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey. Agriculture, 12(1): 9. https://doi.org/10.3390/agriculture12010009
  157. Orn, D., Duan, L., Liang, Y., Siy, H. & Subramaniam, M. 2020. Agro-AI education: artificial intelligence for future farmers. Proceedings of the 21st annual conference on information technology education. pp: 54-57. https://doi.org/10.1145/3368308.3415457
  158. Padhiary, M., Saha, D., Kumar, R., Sethi, L.N. & Kumar, A. 2024. Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicle for farm automation. Smart Agricultural Technology, 100483. http://dx.doi.org/10.1016/j.atech.2024.100483
  159. Pallathadka, H., Jawarneh, M., Sammy, F., Garchar, V., Sanchez, D.T. & Naved, M. 2022. A review of using artificial intelligence and machine learning in food and agriculture industry. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). pp: 2215-2218. IEEE. http://dx.doi.org/10.1109/ICACITE53722.2022.9823427
  160. Pan, Y. 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4): 409-413. https://doi.org/10.1016/J.ENG.2016.04.018
  161. Papadimitriou, F. 2012. Artificial Intelligence in modelling the complexity of Mediterranean landscape transformations. Computers and Electronics in Agriculture, 81: 87-96. https://doi.org/10.1016/j.compag.2011.11.009
  162. Parasuraman, K., Anandan, U. & Anbarasan, A. 2021. IoT based smart agriculture automation in artificial intelligence. Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). pp: 420-427. https://doi.org/10.1109/ICICV50876.2021.9388578
  163. Pardey, P.G., Beddow, J.M., Hurley, T.M., Beatty, T.K. & Eidman, V.R. 2014. A bounds analysis of world food futures: Global agriculture through to 2050. Australian Journal of Agricultural and Resource Economics, 58(4): 571-589. https://doi.org/10.1111/1467-8489.12072
  164. Partel, V., Nunes, L., Stansly, P. & Ampatzidis, Y. 2019. Automated vision-based system for monitoring Asian citrus psyllid in orchards utilizing artificial intelligence. Computers and Electronics in Agriculture, 162: 328-336. http://dx.doi.org/10.1016/j.compag.2019.04.022
  165. Partel, V., Costa, L. & Ampatzidis, Y. 2021. Smart tree crop sprayer utilizing sensor fusion and artificial intelligence. Computers and Electronics in Agriculture, 191: 106556. https://doi.org/10.1016/j.compag.2021.106556
  166. Patil, V.C., Al-Gaadi, K.A., Biradar, D.P. & Rangaswamy, M. 2012. Internet of things (Iot) and cloud computing for agriculture: An overview. Proceedings of agro-informatics and precision agriculture (AIPA 2012), India, 292: 296.
  167. Patil, R.R. & Kumar, S. 2020. A bibliometric survey on the diagnosis of plant leaf diseases using artifificial intelligence. Library Philosophy and Practice, 1-26.
  168. Pawlak, K. & Kołodziejczak, M. 2020. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(13): 5488. https://doi.org/10.3390/su12135488
  169. Pretty, J. 2008. Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491): 447-465. https://doi.org/10.1098/rstb.2007.2163
  170. Pretty, J. & Bharucha, Z.P. 2014. Sustainable intensification in agricultural systems. Annals of botany, 114(8): 1571-1596. https://doi.org/10.1093/aob/mcu205
  171. Qazi, A.M., Mahmood, S.H., Haleem, A., Bahl, S., Javaid, M. & Gopal, K. 2022. The impact of smart materials, digital twins (DTs) and Internet of things (IoT) in an industry 4.0 integrated automation industry. Materials Today: Proceedings, 62: 18-25. http://dx.doi.org/10.1016/j.matpr.2022.01.387
  172. Quinn, J., Frias-Martinez, V. & Subramanian, L. 2014. Computational sustainability and artificial intelligence in the developing world. AI Magazine, 35(3): 36-47. https://doi.org/10.1609/aimag.v35i3.2529
  173. Rajabzadeh, M. & Fatorachian, H. 2023. Modelling factors influencing IoT adoption: With a focus on agricultural logistics operations. Smart cities, 6(6): 3266-3296. https://doi.org/10.3390/smartcities6060145
  174. Raman, D.R., Saravanan, D., Parthiban, R., Palani, D.U., David, D.D.S., Usharani, S. & Jayakumar, D. 2021. A study on application of various artificial intelligence techniques on internet of things. European Journal of Molecular & Clinical Medicine, 7(9): 2531-2557.
  175. Rashid, A.B. & Kausik, A.K. 2024. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 100277. https://doi.org/10.1016/j.hybadv.2024.100277
  176. Rathore, N.S. 2021. Application of artificial intelligence in agriculture including horticulture. International Journal of Innovative Horticulture, 10(2): 138-141. http://dx.doi.org/10.5958/2582-2527.2021.00013.0
  177. Ray, P.P. 2017. Internet of things for smart agriculture: Technologies, practices and future direction. Journal of Ambient Intelligence and Smart Environments, 9(4): 395-420. https://doi.org/10.3233/AIS-170440
  178. Reddy, K.S., Ahmad, S.S. & Tyagi, A.K. 2024. Artificial Intelligence and the Internet of Things-Enabled Smart Agriculture for the Modern Era. AI Applications for Business, Medical, and Agricultural Sustainability. pp: 68-99. IGI Global. http://dx.doi.org/10.4018/979-8-3693-5266-3.ch004
  179. Redhu, N.S., Thakur, Z., Yashveer, S. & Mor, P. 2022. Artificial intelligence: a way forward for agricultural sciences. In: Bioinformatics in agriculture. pp: 641-668. Academic Press. http://dx.doi.org/10.1016/B978-0-323-89778-5.00007-6
  180. Rehman, A., Farooq, M., Lee, D.J. & Siddique, K.H. 2022. Sustainable agricultural practices for food security and ecosystem services. Environmental Science and Pollution Research, 29(56): 84076-84095. https://doi.org/10.1007/s11356-022-23635-z
  181. Rey Benayas, J.M., Martins, A., Nicolau, J.M. & Schulz, J.J. 2007. Abandonment of agricultural land: an overview of drivers and consequences. CABI Reviews, pp: 14. http://dx.doi.org/10.1079/PAVSNNR20072057
  182. Rizvi, A.T., Haleem, A., Bahl, S. & Javaid, M. 2021. Artificial intelligence (AI) and its applications in Indian manufacturing: a review. In: Acharya, S.K., Mishra, D.P. (eds) Current Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-4795-3_76
  183. Rozhkova, A.V. & Rozhkov, S.E. 2022. Artificial intelligence technologies in the agro-industrial complex: opportunities and threats. IOP Conference Series: Earth and Environmental Science. 981(3): pp: 032013. IOP Publishing. http://dx.doi.org/10.1088/1755-1315/981/3/032013
  184. Ruiz-Real, J.L., Uribe-Toril, J., Torres Arriaza, J.A. & de Pablo Valenciano, J. 2020. A look at the past, present and future research trends of artificial intelligence in agriculture. Agronomy, 10(11): 1839. https://doi.org/10.3390/agronomy10111839
  185. Ruiz-Garcia, L. & Lunadei, L. 2011. The role of RFID in agriculture: Applications, limitations and challenges. Computers and electronics in agriculture, 79(1): 42-50. https://doi.org/10.1016/j.compag.2011.08.010
  186. Sadiku, M.N., Ashaolu, T.J. & Musa, S.M. 2020. Big data in agriculture. International journal of scientific advances, 1(1): 44-48. http://dx.doi.org/10.51542/ijscia.v1i1.9
  187. Sagan, V., Maimaitijiang, M., Paheding, S., Bhadra, S., Gosselin, N., Burnette, M. & Mockler, T. C. 2021. Data-driven artificial intelligence for calibration of hyperspectral big data. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-20. http://dx.doi.org/10.1109/TGRS.2021.3091409
  188. Saheb, T., Dehghani, M. & Saheb, T. 2022. Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis. Sustainable Computing: Informatics and Systems, 35: 100699. https://doi.org/10.1016/j.suscom.2022.100699
  189. Sahni, V., Srivastava, S. & Khan, R. 2021. Modelling techniques to improve the quality of food using artificial intelligence. Journal of Food Quality, 2021(1): 2140010. https://doi.org/10.1155/2021/2140010
  190. Salehin, I., Talha, I.M., Hasan, M.M., Dip, S.T., Saifuzzaman, M. & Moon, N.N. 2020. An artificial intelligence based rainfall prediction using LSTM and neural network. 2020 IEEE international women in engineering (WIE) conference on electrical and computer engineering (WIECON-ECE). pp: 5-8. http://dx.doi.org/10.1109/WIECON-ECE52138.2020.9398022
  191. Saleem, M.H., Potgieter, J. & Arif, K.M. 2021. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precision Agriculture, 22(6): 2053-2091. https://link.springer.com/article/10.1007/s11119-021-09806-x
  192. Sánchez, J.M., Rodríguez, J.P. & Espitia, H.E. 2020. Review of artificial intelligence applied in decision-making processes in agricultural public policy. Processes, 8(11): 1374. https://doi.org/10.3390/pr8111374
  193. Sane, T.U. & Sane, T.U. 2021. Artificial intelligence and deep learning applications in crop harvesting robots-A survey. International Conference on Electrical, Communication, and Computer Engineering (ICECCE). pp: 1-6. IEEE. http://dx.doi.org/10.1109/ICECCE52056.2021.9514232
  194. Santangeli, A., Chen, Y., Kluen, E., Chirumamilla, R., Tiainen, J. & Loehr, J. 2020. Integrating drone-borne thermal imaging with artificial intelligence to locate bird nests on agricultural land. Scientific reports, 10(1): 10993. https://doi.org/10.1038/s41598-020-67898-3
  195. Sarker, I.H. 2021. Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3): 160. https://doi.org/10.1007/s42979-021-00592-x
  196. Sarkar, M.R., Masud, S.R., Hossen, M.I. & Goh, M. 2022. A comprehensive study on the emerging effect of artificial intelligence in agriculture automation. IEEE 18th International Colloquium on Signal Processing & Applications (CSPA).pp: 419-424.
  197. Shah, F. & Wu, W. 2019. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11(5): 1485. https://doi.org/10.3390/su11051485
  198. Shaikh, T.A., Rasool, T. & Lone, F.R. 2022. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Computers and Electronics in Agriculture, 198: 107119. http://dx.doi.org/10.1016/j.compag.2022.107119
  199. Sharma, S., Gahlawat, V.K., Rahul, K., Mor, R.S. & Malik, M. 2021. Sustainable innovations in the food industry through artificial intelligence and big data analytics. Logistics, 5(4): 66. https://doi.org/10.3390/logistics5040066
  200. Sharma, A., Georgi, M., Tregubenko, M., Tselykh, A. & Tselykh, A. 2022a. Enabling smart agriculture by implementing artificial intelligence and embedded sensing. Computers & Industrial Engineering, 165: 107936. https://doi.org/10.1016/j.cie.2022.107936
  201. Sharma, P., Vimal, A., Vishvakarma, R., Kumar, P., porto de Souza Vandenberghe, L., Gaur, V.K. & Varjani, S. 2022c. Deciphering the blackbox of omics approaches and artificial intelligence in food waste transformation and mitigation. International Journal of Food Microbiology, 372: 109691. https://doi.org/10.1016/j.ijfoodmicro.2022.109691
  202. Sharma, R., Kumar, N. & Sharma, B.B. 2022d. Applications of artificial intelligence in smart agriculture: a review. Recent Innovations in Computing: Proceedings of ICRIC, 1: 135-142. http://dx.doi.org/10.1007/978-981-16-8248-3_11
  203. Sharma, V., Tripathi, A.K. & Mittal, H. 2022b. Technological revolutions in smart farming: Current trends, challenges & future directions. Computers and Electronics in Agriculture, 201: 107217. http://dx.doi.org/10.1016/j.compag.2022.107217
  204. Sharma, K. & Shivandu, S.K. 2024. Integrating artificial intelligence and internet of things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International, 100292. http://dx.doi.org/10.1016/j.sintl.2024.100292
  205. Shelake, S., Sutar, S., Salunkher, A., Patil, S., Patil, R., Patil, V. & Tamboli, T. 2021. Design and implementation of artificial intelligence powered agriculture multipurpose robot. International Journal of Research in Engineering, Science and Management, 4(8): 165-167. http://dx.doi.org/10.33130/AJCT.2021v07i01.032
  206. Sick, D. 2014. The new face of the countryside: Agriculture and generational livelihood strategies in rural Costa Rica. Rural Livelihoods, regional economies, and processes of change.pp: 36-57. Routledge.
  207. Sims, B. & Kienzle, J. 2017. Sustainable agricultural mechanization for smallholders: What is it and how can we implement it?. Agriculture, 7(6): 50. https://doi.org/10.3390/agriculture7060050
  208. Singh, K.K. 2018. An artificial intelligence and cloud based collaborative platform for plant disease identification, tracking and forecasting for farmers. IEEE international conference on cloud computing in emerging markets (CCEM). pp: 49-56. IEEE. http://dx.doi.org/10.1109/CCEM.2018.00016
  209. Singh, S.K., Rathore, S. & Park, J.H. 2020. Blockiotintelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Generation Computer Systems, 110: 721-743. https://doi.org/10.1016/j.future.2019.09.002
  210. Singh, P. & Kaur, A. 2022. A systematic review of artificial intelligence in agriculture. Deep learning for sustainable agriculture, 2022: 57-80. http://dx.doi.org/10.1016/B978-0-323-85214-2.00011-2
  211. Singh, S. & Jain, P. 2022. Applications of artificial intelligence for the development of sustainable agriculture. Agro-biodiversity and Agri-ecosystem Management. pp: 303-322. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0928-3_16
  212. Singhal, S., Ahuja, L. & Pathak, N. 2021. Impact of artificial intelligence and IOT in agriculture. 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N). pp: 668-671. IEEE. http://dx.doi.org/10.1109/ICAC3N53548.2021.9725655
  213. Sishodia, R.P., Ray, R.L. & Singh, S.K. 2020. Applications of remote sensing in precision agriculture: A review. Remote sensing, 12(19): 3136. https://doi.org/10.3390/rs12193136
  214. Sivakumar, V.G., Baskar, V.V., Vadivel, M., Vimal, S.P. & Murugan, S. 2023. IoT and GIS Integration for Real-Time Monitoring of Soil Health and Nutrient Status. International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS).pp: 1265-1270. IEEE. http://dx.doi.org/10.1109/ICSSAS57918.2023.10331694
  215. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P. & Smith, J. 2008. Greenhouse gas mitigation in agriculture. Philosophical transactions of the royal Society B: Biological Sciences, 363(1492): 789-813. https://doi.org/10.1098/rstb.2007.2184
  216. Smith, M.J. 2018. Getting value from artificial intelligence in agriculture. Animal Production Science, 60(1): 46-54. https://doi.org/10.1071/AN18522
  217. Songol, M., Awuor, F. & Maake, B. 2021. Adoption of artificial intelligence in agriculture in the developing nations: a review. Journal of Language, Technology & Entrepreneurship in Africa, 12(2): 208-229.
  218. Sparrow, R., Howard, M. & Degeling, C. 2021. Managing the risks of artificial intelligence in agriculture. NJAS: Impact in Agricultural and Life Sciences, 93(1): 172-196. https://doi.org/10.1080/27685241.2021.2008777
  219. Spiertz, J.H.J. 2009. Nitrogen, sustainable agriculture and food security: a review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., eds Sustainable Agriculture. Springer, Dordrecht. pp. 35-51. https://doi.org/10.1007/978-90-481-2666-8_39
  220. Steenwerth, K.L., Hodson, A.K., Bloom, A.J., Carter, M.R., Cattaneo, A., Chartres, C.J. & Jackson, L.E. 2014. Climate-smart agriculture global research agenda: scientific basis for action. Agriculture & Food Security, 3: 1-39. https://doi.org/10.1186/2048-7010-3-11
  221. Su, W.H. 2020. Crop plant signaling for real-time plant identification in smart farm: A systematic review and new concept in artificial intelligence for automated weed control. Artificial Intelligence in Agriculture, 4: 262-271. https://doi.org/10.1016/j.aiia.2020.11.001
  222. Subeesh, A. & Mehta, C.R. 2021. Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5: 278-291. https://doi.org/10.1016/j.aiia.2021.11.004
  223. Sujatha, K., Koti, M.S. & Supriya, R. 2021. Analysis of farm data using artificial intelligence. Innovative Data Communication Technologies and Application: Proceedings of ICIDCA 2020. pp: 203-211. Springer Singapore. http://dx.doi.org/10.1007/978-981-15-9651-3_18
  224. Sujawat, G.S. & Chouhan, J.S. 2021. Application of artificial intelligence in detection of diseases in plants: a survey. Turkish Journal of Computer and Mathematics Education, 12(3): 3301-3305. https://turcomat.org/index.php/turkbilmat/article/view/1581
  225. Taberkit, A.M., Kechida, A. & Bouguettaya, A. 2021. Algerian perspectives for UAV-based remote sensing technologies and artificial intelligence in precision agriculture. Proceedings of the 4th international conference on networking, information systems & security. pp: 1-9. https://doi.org/10.1145/3454127.3457637
  226. Tang, D., Feng, Y., Gong, D., Hao, W. & Cui, N. 2018. Evaluation of artificial intelligence models for actual crop evapotranspiration modeling in mulched and non-mulched maize croplands. Computers and electronics in agriculture, 152: 375-384. https://doi.org/10.1016/j.compag.2018.07.029
  227. Tantalaki, N., Souravlas, S. & Roumeliotis, M. 2019. Data-driven decision making in precision agriculture: The rise of big data in agricultural systems. Journal of agricultural & food information, 20(4): 344-380. http://dx.doi.org/10.1080/10496505.2019.1638264
  228. Thilakarathne, N.N., Bakar, M.S.A., Abas, P.E. & Yassin, H. 2023. Towards making the fields talks: A real-time cloud enabled IoT crop management platform for smart agriculture. Frontiers in Plant Science, 13: 1030168. https://doi.org/10.3389/fpls.2022.1030168
  229. Thornton, P.K. 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554): 2853-2867. https://doi.org/10.1098/rstb.2010.0134
  230. Titirmare, S., Margal, P.B., Gupta, S. & Kumar, D. 2024. AI-powered predictive analytics for crop yield optimization. Agriculture 4.0., pp: 89-110. CRC Press. http://dx.doi.org/10.1201/9781003570219-5
  231. Tiwari, P.S., Singh, K.K., Sahni, R.K. & Kumar, V. 2019. Farm mechanization–trends and policy for its promotion in India. The Indian Journal of Agricultural Sciences, 89(10): 1555-1562. http://dx.doi.org/10.56093/ijas.v89i10.94575
  232. Tzachor, A., Devare, M., King, B., Avin, S. & Ó hÉigeartaigh, S. 2022. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nature Machine Intelligence, 4(2): 104-109. https://doi.org/10.1038/s42256-022-00440-4
  233. Upadhyay, N. & Gupta, N. 2021. A survey on diseases detection for agriculture crops using artificial intelligence. 5th International conference on information systems and computer networks (ISCON). pp: 1-8. IEEE. http://dx.doi.org/10.1109/ISCON52037.2021.9702513
  234. Vaezi, M., Azari, A., Khosravirad, S.R., Shirvanimoghaddam, M., Azari, M.M., Chasaki, D. & Popovski, P. 2022. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G. IEEE Communications Surveys & Tutorials, 24(2): 1117-1174. https://doi.org/10.1109/COMST.2022.3151028
  235. Vangala, A., Das, A.K., Kumar, N. & Alazab, M. 2020. Smart secure sensing for IoT-based agriculture: Blockchain perspective. IEEE Sensors Journal, 21(16): 17591-17607. http://dx.doi.org/10.1109/JSEN.2020.3012294
  236. Velusamy, P., Rajendran, S., Mahendran, R.K., Naseer, S., Shafiq, M. & Choi, J.G. 2021. Unmanned Aerial Vehicles (UAV) in precision agriculture: Applications and challenges. Energies, 15(1): 217. https://doi.org/10.3390/en15010217
  237. Vincent, D.R., Deepa, N., Elavarasan, D., Srinivasan, K., Chauhdary, S.H. & Iwendi, C. 2019. Sensors driven AI-based agriculture recommendation model for assessing land suitability. Sensors, 19(17): 3667. https://doi.org/10.3390/s19173667
  238. Wang, H. 2019. The rationality evaluation of green agriculture industry structure in heilongjiang province based on artificial intelligence technology. 12th International Conference on Intelligent Computation Technology and Automation (ICICTA). pp: 719-723. IEEE. http://dx.doi.org/10.1109/ICICTA49267.2019.00157
  239. Weng, S., Zhu, W., Zhang, X., Yuan, H., Zheng, L., Zhao, J. & Han, P. 2019. Recent advances in Raman technology with applications in agriculture, food and biosystems: A review. Artificial Intelligence in Agriculture, 3: 1-10. https://doi.org/10.1016/j.aiia.2019.11.001
  240. Whittlesey, D. 1936. Major agricultural regions of the earth. Annals of the Association of American Geographers, 26(4): 199-240. https://doi.org/10.1080/00045603609357154
  241. Widianto, M.H., Ardimansyah, M.I., Pohan, H.I. & Hermanus, D.R. 2022. A systematic review of current trends in artificial intelligence for smart farming to enhance crop yield. Journal of Robotics and Control (JRC), 3(3): 269-278. http://dx.doi.org/10.18196/jrc.v3i3.13760
  242. Wilson, P. 2014. Farmer characteristics associated with improved and high farm business performance. International journal of agricultural management, 3(4): 1-9. http://dx.doi.org/10.5836/ijam/2014-04-02
  243. Yadav, V.S., Singh, A.R., Raut, R.D., Mangla, S.K., Luthra, S. & Kumar, A. 2022. Exploring the application of Industry 4.0 technologies in the agricultural food supply chain: A systematic literature review. Computers & Industrial Engineering, 169: 108304. http://dx.doi.org/10.1016/j.cie.2022.108304
  244. Yahya, N. & Yahya, N. 2018. Agricultural 4.0: Its implementation toward future sustainability. Green Urea: For Future Sustainability, 125-145. http://dx.doi.org/10.1007/978-981-10-7578-0_5
  245. Yaswanth Bhanu Murthy, M., Enaul Haq, S., Anne, K. & Sunil Babu, M. 2022. Integration of Artificial Intelligence and IoT on Agricultural Applications. Intelligent Systems for Social Good: Theory and Practice. pp: 29-38. Singapore: Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-19-0770-8_3
  246. Zahoor, I. & Mushtaq, A. 2023. Water pollution from agricultural activities: A critical global review. International Journal of Chemical and Biochemical Sciences, 23(1): 164-176.
  247. Zhang, L. & Wang, S. 2020. Input-output analysis of agricultural economic benefits based on big data and artificial intelligence. Journal of Physics: Conference Series. 1574(1): 012121. IOP Publishing. http://dx.doi.org/10.1088/1742-6596/1574/1/012121
  248. Zhang, J. 2020. Research on digital image processing and recognition technology of weeds in maize seedling stage based on artificial intelligence. Journal of Physics: Conference Series. 1648(4): 042058. IOP Publishing. https://doi.org/10.1088/1742-6596/1648/4/042058
DOI: https://doi.org/10.2478/contagri-2025-0027 | Journal eISSN: 2466-4774 | Journal ISSN: 0350-1205
Language: English
Submitted on: Mar 11, 2025
Accepted on: May 27, 2025
Published on: Nov 20, 2025
Published by: University of Novi Sad
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Md Abu Imran Mallick, published by University of Novi Sad
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT